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Abstract

This work is concerned with the theory and numerical implementation of a finite strain

plasticity model considering isotropic hardening. We will consider a certain type of a finite

strain plasticity model for isotropic elasto-plasticity. This model is formulated in terms of

the elastic left Cauchy-Green-tensor be. The evolution of be is accomplished by means

of an exponential map. The proposed material model allows isotropic hyper-elastic laws

as well as isotropic yield conditions. Thus the task was to add certain subroutines to an

existing material model referred to as tensor model. The model is first formulated in a

tensor related representation and is then one-to-one translated into principal axes. The

algorithmic elasto-plastic tangent operator is obtained in closed form, a task which has

been simplified by application of a particular eigenvalue formalism in contrast to tensor

formalism. Finally, the applicability of the proposed eigenvalue model and of the tensor

model is demonstrated by three representative examples, in which both model results are

compared.
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Chapter 1

Preliminaries

1.1 Introduction

The theory of elastoplastic media is now a mature branch of solid and structural mechan-

ics, having experienced significant development during the latter half of this century. In

particular, the classical theory, which deals with small-strain elastoplasticity problems,

has a firm mathematical basis and from this basis further developments, both mathemat-

ical and computational, have evolved. Small-strain elastoplasticity is well understood and

the understanding of its governing equations can be said to be almost complete. Likewise,

theoretical, computational and algorithmic work on approximations of desired accuracy

can be achieved with confidence.

The finite-strain theory has evolved along parallel lines, although it is considerably

more complex and is subject to a number of alternative treatments. The form taken by

the governing equations is reasonably settled, though there is as yet no mathematical

treatment of existance, uniqueness and stability analogous to those of the small-strain

case. Computationally, great strides have been made in the last two decades and it is now

possible to solve highly complex problems with the aid of the computer.

1.2 Previous studies

It is generally agreed that the origin of plasticity dates back to a series of papers by

Tresca from 1864 to 1872 on the extrusion of metals. In this work the first yield condition

was proposed : The condition, known subsequently as the Tresca yield criterion, stated

that a metal yields when the maximal shear stress attains a critical value. In the same

time period, St.Venant introduced basic constitutive relations for rigid, perfectly plastic
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materials in plane stress and suggested that principal axes of the strain increment coincide

with the principal axes of stress. Lévy derived the general equations in three dimensions.

In 1913, [von Mises 1913] derived the general equations for plasticity, accompanied by

his well-known pressure-insensitive yield criterion(J2-theory, or octahedral shear stress

yield condition).

In 1924, [Prandtl 1924] extended the St.Venant-Levy-von Mises equations

for the plane continuum problem to include the elastic component of strain and [Reuss

1939] in 1930 carried out their extension to three dimensions.

Compared to perfect plasticity, the developement of incremental constitutive rela-

tions for hardening materials proceeded more slowly. In 1928, [Prandtl 1928] attempted

to formulate general relations for hardening behavior. In 1938, [Melan 1938] generalized

the foregoing concepts of perfect plasticity by giving incremental relations for hardening

solids with smooth yield surface and discussing uniqueness results for elastoplastic in-

cremental problems for both perfectly plastic and hardening materials, based on some

limiting assumptions.

Since 1940, the theory of plasticity has seen relatively more rapid developement.

A detailed description of early development of plasticity theory and a comprehensive list

of references on plasticity published before 1980 can be found in [Życzkowski 1981].

Trying to close the gap from the early beginnings to the present situation is al-

most impossible. Since then the development of plasticity models, especially finite strain

plasticity models, was considerably rapid. Today this subject in particular in the isotropic

case is very much understood. Two important monographs which study this problems in

a variety of ways are [Simo & Hughes 1998] and [Han & Reddy 1999]. The book

of [Han & Reddy 1999] focusses in particular on a rigourous mathematical analysis of

plasticity whereas in [Simo & Hughes 1998] a comprehensive account of the field of lin-

ear and nonlinear elasto-plasticity can be found in a modern style of nonlinear continuum

mechanics. For more detail of the current state of plasticity these two monographs are

recommended.

1.3 Objective of this work

The problem when dealing with finite strain plasticity modelling is that each type of

model has to be considered on a case by case basis in contrast to infinitesimal plasticity

since the nonlinear case opens a wide range of new questions like the appropriate choice

of strain and stress tensors or a suitable choice of objective time derivatives.



1.4 Analysing Tools 3

In this work we will consider a certain type of a finite strain plasticity model for

isotropic elasto-plasticity. This model is formulated in terms of the elastic left Cauchy-

Green-tensor be. The evolution of be is accomplished by means of an exponential map.

Apart from this the model is similar to one proposed in [Simo & Hughes 1998]. However,

in the present form, due to the exponential map and since we donnot use logarithmic

strains, we cannot exploit the fact that the normal to the yield surface is defined by

the trial normal at the beginning of the Return map. Therefore to increase accuracy

the normal has to be included in the nonlinear equation system as independent residual.

This, however, makes the algorithm a bit more complex. Thus, to increase efficiency

we strive to formulate this model in principal axes, where we can exploit the fact that

the eigenprojections of be are invariant during the Return Map. This results in a 4-

dimensional problem, where besides the consistency parameter the three eigenvalues of

the normal to the yield surface are independent variables.

To conclude, the model relies on the following assumptions: (i) the isotropy of

the hyperelastic law, (ii) the use of be as driving variable, (iii) the coaxiality of the

Kirchhoff-stress measure τττ and be, (iv) the use of the usual von Mises-J2-yield func-

tion, (v) the evolution of be by means of an exponential map, (vi) the consideration of

the normal to the yield surface as independent variable.

The model is first formulated in a tensor related representation and is then one-to-

one translated into principal axes. Thereby the dimensionality of the problem is reduced

from 10 to 4.

1.4 Analysing Tools

MARC-MENTAT program has been recognized as the premier general purpose program

for nonlinear finite element analysis since the mid-1970s. This system contains a series

of integrated programs that facilitate analysis of engineering problems in the fields of

structural mechanics, heat transfer and electro magnetics. Since the mid-1970s, MARC

has been recognized as the premier general purpose program for nonlinear finite element

analysis

The MARC system consists of the following programs:

• MARC

• MENTAT

These programs work together to:
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• Generate geometric information that defines your structure (MARC and

MSC.MARC MENTAT (MENTAT))

• Analyze your structure (MARC)

• Graphically depict the results (MARC and MENTAT)

1.4.1 MARC

MARC can be used to perform linear or nonlinear stress analysis in the static and dynamic

regimes and to perform heat transfer analysis. Physical problems in one, two, or three

dimensions can be modeled using a variety of elements. These elements include trusses,

beams, shells and solids. Mesh generators, graphics and post processing capabilities,

which assist you in the preparation of input and the interpretation of results, are all

available in MARC.

1.4.2 MENTAT

MENTAT is an interactive computer program that prepares and processes data for use

with the finite element method. Interactive computing can significantly reduce the human

effort needed for analysis by the finite element method. Graphical presentation of data

further reduces this effort by providing an effective way to review the large quantity of

data typically associated with finite element analysis.

An important aspect of MENTAT is that you can interact directly with the pro-

gram. MENTAT verifies keyboard input and returns recommendations or warnings when

it detects questionable input. MENTAT checks the contents of input files and generates

warnings about its interpretation of the data if the program suspects that it may not

be processing the data in the manner in which you, the user, have assumed. MENTAT

allows you to graphically verify any changes.

MENTAT can process both two- and three-dimensional meshes to do the follow-

ing: Generate and display a mesh and display boundary conditions and loadings perform

post-processing to generate contour, deformed shape and time history plots.
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Kinematics

2.1 General background

Any nonrigid body deforms when it is subjected to external forces. The deformation is

called elastic if it is reversible and time independent, that is, if the deformation vanishes

instantaneously as soon as forces are removed. A reversible but time-dependent defor-

mation is known as viscoelastic; in this case the deformation increases with time after

application of load and it decreases slowly after the load is removed. The deformation is

called plastic if it is irreversible or permanent.

In modeling the material nonlinear behavior of solids, plasticity theory is appli-

cable primarily to those bodies that can experience inelastic deformations considerably

greater than the elastic deformation. If the resulting total deformation, including both

translations and rotations, are small enough, we can apply small deformation theory in

solving these problems. If, however strains and rotations are finite, one must resort to the

theory of large deformations. In doing so, we will be using two sets of representations,

namely: Material coordinates in the undeformed or reference configuration, also called

Lagrangian coordinates and Spatial coordinates in the deformed or current configuration,

also called Eulerian coordinates.

2.2 Deformation

In finite strain elasticity we distinguish two configurations, the reference and current

configuration. The deformation assigns to each point in the reference configuration X its

deformed image x in the current configuration.
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2.2.1 Lagrangian and Eulerian coordinates

Lagrangian coordinates. We consider the configuration B0 of a body at time t0 in a

3D Euclidean space E3. In B0, the body is supposed to be unloaded, undeformed and

unstressed. This is set as the initial configuration at the beginning of the computation.

The position vector of a typical point P0 of B0 relative to the origin O of an orthogonal

Cartesian coordinate system is denoted by

X = X iii , (2.1)

where X i are Lagrangian or material coordiantes and ii = ii are unit vectors along Xi-

axes (Figure.2.1).

Eulerian coordinates: We now suppose the body to take at a certain time t a

new configuration B in E3, due to the action of external forces. This is set as the current

configuration. Then, the point P0 is moved into the position P which will be determined

with respect to the same origin O by the position vector

x = xiii , (2.2)

where xi are called Eulerian or spatial coordinates. The two position vectors are con-

nected by the displacement u. In vector algebra the deformation relationship reads as:

x = X + u , (2.3)

where X is the position vector in the reference configuration and x is the position vector in

the current configuration. Here, we resolve each vector with respect to a global reference

frame, that is:

xiii = Xkik + umim , (2.4)

with the components xi, Xk, um and an orthonormal base vector system ii. If we consider

the Equation (2.3) in differential form we obtain :

dx = F dX . (2.5)

2.3 Deformation gradient

In contrast to the additive relation of Equation (2.3) we now have a multiplicative

relationship. F denotes a second-order tensor which maps the differential element dX onto

dx. The quantity F is crucial in nonlinear continuum mechanics and is a primary measure
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P 0
B 0

P

BI n i t i a l  c o n f i g u r a t i o n
C u r r e n t  c o n f i g u r a t i o n

i 1

X
x

u

i 2

i 3

Figure 2.1: Material and spatial coordinates; displacement vector u

of deformation called the deformation gradient characterising the motion behaviour in the

infinitesimal neighbourhood of a point. The definition for F is given as :

F = I + Gradu = I + H . (2.6)

Here the gradient of the displacement vector H = Gradu has been used. Considering

the linear strain measure ǫ the gradient H is employed in the form

ǫ =
1

2
(H + HT ) =

1

2
(Gradu + (Gradu)T ) . (2.7)

Since the gradient is defined by

Gradu =
∂u

∂X
=

∂u

∂X i
ii =

∂uj

∂X i
ij ⊗ ii ⇒ (Gradu)T =

∂uj

∂X i
ii ⊗ ij , (2.8)

we get in particular the following components of ǫ:

ǫ11 =
∂u1

∂X1
, (2.9)

ǫ12 =
1

2
(
∂u1

∂X2
+
∂u2

∂X1
) , · · · (2.10)
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2.4 Strain tensors

We will now introduce second-order strain tensors which measure length and angle changes

of differential elements during a motion. There are numerous definitions of strain tensors

proposed in literature, however, here we will introduce only the most important ones,

the so called Green-Lagrange and Almansi-strain tensors. They are called objective,

since they measure only relative length and angle changes and vanish for pure rigid body

movements.

2.4.1 The right and left Cauchy-Green tensors

At first, we will introduce the right Cauchy-Green tensor C defined by

C = F∗ gF , (2.11)

where g is the spatial metric. C is symmetric and positive-definite and, therefore

C = F∗ gF = (F∗ gF)∗ = C∗ . (2.12)

It is obvious that all six components of C can be computed, if all nine components of F

are given, but it is impossible to compute F if only C is given. A further important strain

measure is the left Cauchy-Green tensor b defined by

b = FG−1 F∗ , (2.13)

where G−1 is the inverse metric of the initial state. The second-order tensor b is like C

symmetric and positive-definite

b = FG−1 F∗ = (FG−1 F∗)∗ = b∗ . (2.14)

2.4.2 Polar decomposition

The deformation gradient F can be uniquely decomposed into a rotational and a stretching

part, as shown in (Figure 2.2). Depending on the sequence , if we first stretch the body

and then rotate it to the final position we have the decomposition

F = RU (2.15)

and, for the second case, if we rotate first and then stretch, we obtain
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F = vR . (2.16)

In the above equation, the quantity R is a proper orthogonal tensor with RT = R−1 and

R V

U R

F

Figure 2.2: Decomposition in rotational and stretching part

is called a rotation tensor. U and v define unique, positive-definite, symmetric tensors

which are called the right (or material) stretch tensor and the left (or spatial)

stretch tensor, respectively. It can be shown that the right Cauchy-Green tensor C

can be expressed as

C = F∗ gF = (RU)∗ gRU = U∗R∗ gRU = GU2 , (2.17)

because U is symmetric (U∗ = GUG−1) and R is proper orthogonal and therefore

R∗ gR = G. Likewise, for the spatial left Cauchy-Green tensor b we get

b = FG−1 F∗ = vRG−1 (vR)∗ = vRG−1 R∗v∗ = v2 g−1 , (2.18)

with v∗ = g v g−1.

2.4.3 Green-Lagrange strain tensor

These two tensors are suitable to construct nonlinear strain measures. A useful strain

measure called Green-Lagrange strain tensor is defined by:
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E =
1

2
(C −G) , (2.19)

where G is a certain representation of I, the identity tensor of second-order. We consider

E to be nonlinear, since

E =
1

2
(FT F− I) =

1

2
((I + H)T (I + H) − I) ,

=
1

2
(H + HT + HTH + I − I) ,

= ǫǫǫ+
1

2
(HTH) .

(2.20)

2.5 Metric Properties

In this section we introduce co-variant and contra-variant base vectors and discuss the

construction of metric tensor components.

2.5.1 Co-variant base vectors

Consider a special coordinate θi, which is not only curvilinear but, in addition, convective.

The corresponding definitions for the co-variant base vectors are given as follows:

Gi =
∂X

∂θi
, gi =

∂x

∂θi
. (2.21)

Convective means that the coordinate system is inscribed on the body. At each point P of

a body the base vectors Gi are by virtue of Equation (2.21) tangential to the coordinate

line θi at the point X located in the initial configuration. And analogously for gi, which

are tangential to the coordinate lines θi at the point x. A direct consequence is that at

each material point the coordinates θi are the same in any configuration considered. The

coordinate lines are somehow fixed to the material point and deform with the material in

contrast to a basis which is fixed in space like ii. Using Equations (2.21) and (2.5) we

are able to obtain a relationship between both base vector systems:

gi =
∂x

∂θi
=
dx

dθi
=

FdX

dθi
= F

∂X

∂θi
= FGi , (2.22)

that means gi and Gi are coupled by means of the deformation gradient F.
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2.5.2 Contra-variant base vectors

We can obtain the contra-variant base vectors Gi and gi as follows:

• Considering the position vectors X and x, the co-variant base vectors are obtained

using Equation (2.21).

• Compute the metric tensor components

Gij = Gi · Gj = Gj · Gi = Gji , (2.23)

gij = gi · gj = gj · gi = gji . (2.24)

• Invert the co-variant metric tensor components

[Gij] = [Gij]
−1 , [gij] = [gij ]

−1 . (2.25)

• Raising the indices of Gi and gi by means of the metric

Gi = GijGj , gi = gijgj . (2.26)

As a well known fact for orthonormal coordinates the relation ii · ij = δij holds which has

its analogy in:

Gi ·Gj = δj
i , (2.27)

GijG
jk = GkjGji = δk

i , gijg
jk = gkjgji = δk

i , (2.28)

which were already used in Equation (2.26). δj
i is called Kronecker-delta and repre-

sents the following matrix:

δi
j = δij =










1 0 0

0 1 0

0 0 1










. (2.29)

By introducing convective coordinates we obtain a very simple expression for the compo-

nents of E:

E = EijG
i ⊗ Gj =

1

2
(gij −Gij)G

i ⊗ Gj , (2.30)

that means to compute the strains we simply have to subtract the metric tensor compo-

nents related to the initial and current configuration from each other. The metric measures
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in fact lengths and angles. For example if we consider the product of two vectors U · V
we get:

U · V = U iGi · V jGj = U iV jGi · Gj = U iV jGij . (2.31)

Similar holds for the product of two vectors which are related to the current configuration.

Using Equation (2.5) E can be also defined by:

dX · E dX =
1

2
(dx · g dx − dX · G dX) , (2.32)

that means the Green-Lagrange strain measures the length and angle changes of two

differential line elements belonging to the same material point P but coupled by the

deformation gradient F. E can be expressed in the form Equation (2.19) if we use the

following tensors :

C = GU2 = F∗ g F = CijG
i ⊗ Gj = gijG

i ⊗ Gj, G = GijG
i ⊗ Gj . (2.33)

Now it becomes clear why we have used G in Equation (2.19). Using Gi = GijG
j we

can see that G = I is the second-order identity tensor.

2.5.3 Almansi strain tensor

If we take the components of E and couple them with current base vectors we obtain a

further strain measure, the so called Almansi strain tensor, which is denoted by:

e = Eij gi ⊗ gj =
1

2
(gij −Gij) gi ⊗ gj . (2.34)

If we use the tensors

g = gij gi ⊗ gj, b−1 = g v−2 = F−∗ GF−1 = Gijg
i ⊗ gj , (2.35)

we arrive at the following representation in absolute form:

e =
1

2
(g − b−1). (2.36)

We also use g here, which is nothing else than the second-order identity tensor i only to

emphasize that e has a co-variant component decomposition. The tensors E and e are in

fact coupled by means of F:

e = F−∗ EF−1 . (2.37)

If we had wished to express E with respect to a new basis we would have used the usual

component transformation rules:

ēkl = Eij (Gi · gk)(G
j · gl) 6= Ekl. (2.38)
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2.6 Pull-back and push-forward operations

Pull-back and push-forward. Pull-back and push-forward are operations which trans-

port the components of a tensor from the deformed basis into the undeformed one or vice

versa.

2.6.1 Push-forward

The push-forward is symbolized by the following notation:

e = F�(E) , gi = F�(Gi) , gi = F�(Gi) . (2.39)

One can derive a relation similar to Equation (2.22) for the contra-variant base vectors

Gi and gi which reads as:

gi · gj = FGi · gj = Gi · F∗gj = δj
i = Gi · Gj ⇒ Gj = F∗gj ,

gi = F−∗Gi ,

(2.40)

such that we obtain for the push-forward of the tensor E to e

e = F−∗(EijG
i ⊗ Gj)F−1 = EijF

−∗Gi ⊗ GjF−1
︸ ︷︷ ︸

F−∗Gj

= Eijg
i ⊗ gi . (2.41)

Recognizing the base vector transformations Equation (2.22) and Equation (2.40) the

push-forward can be easily obtained. For convective coordinates we can follow in fact a

very simple rule: The components are invariant and only the base vectors are changed

from Gi to gi or Gi to gi.

2.6.2 Pull-back

Pull-back: The inverse operation to a push-forward is called pull-back and is denoted by

F�(· · ·):

E = F�(e) , Gi = F�(gi) , Gi = F�(gi) . (2.42)

From Equations (2.39), (2.42), (2.19) and (2.36) the following identities hold:

g = F�(C) , C = F�(g) , b−1 = F�(G) , G = F�(b−1) . (2.43)
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However, although the notation is unique, as per the [Başar & Weichert 2000] the

actual form of the push-forward or pull-back operation depends on the component decom-

position. The relation Equation (2.22) implies by using Equation (2.27) the following

tensor relation for the deformation gradient :

F = gi ⊗Gi ⇒ gi = FGi = (gk ⊗ Gk) · Gi = gkδ
k
i = gi . (2.44)

Note that, if we have Kronecker-delta in one expression, we can exchange the dummy

indices.

2.7 Constitutive relations in tensor notation

The Green-Lagrange strain tensor E and the Almansi-Euler strain tensor e used for the

formulation of constitutive relations are expressible in terms of the following tensors:

the right Cauchy-Green tensor:

C = F∗ gF = CijG
i ⊗Gj = (gi · gj)G

i ⊗ Gj , (2.45)

the inverse of the left Cauchy-Green tensor:

b−1 = F−∗ GF−1 = b−1
ij gi ⊗ gj = (Gi · Gj)g

i ⊗ gj , (2.46)

the metric tensor of the undeformed state B0:

G = GijG
i ⊗Gj , (2.47)

the metric tensor of the deformed state B:

g = gijg
i ⊗ gj , (2.48)

where F is the deformation gradient:

F = gi ⊗ Gi, F−1 = Gi ⊗ gi . (2.49)

We use the Green-Lagrange strain tensor to define 3D strains:

E =
1

2
(C − G) = EijG

i ⊗ Gj =
1

2
(gij −Gij)G

i ⊗ Gj ,

=
1

2
(gi · gj − Gi · Gj)G

i ⊗ Gj ,

(2.50)

or, alternatively, the Almansi strain tensor

e =
1

2
(g − b−1) = eijg

i ⊗ gj =
1

2
(gij −Gij)g

i ⊗ gj . (2.51)



Chapter 3

Shell Theory

3.1 Shell kinematics

3.1.1 Element formulation of the undeformed shell continuum

Figure 3.1 given below illustrates the undeformed shell continuum. We consider a shell

element with a midsurface S0 and a height h, which is usually small. Each element

possesses four nodes and for each node there exist six degrees of freedom (displacements

and rotations). Apart from this, certain kinematical assumptions are considered. The

h

S 0

x
i 3

i 2
i 1

Figure 3.1: Shell element with midsurface

kinematical assumption couples continuum-like displacements with shell variables. Here

we use a so-called Mindlin-Reissner-kinematics which is given as follows:
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Initial state : X
︸︷︷︸

continuum

=
0

X +θ3D
︸ ︷︷ ︸

shell

.

Current state: x
︸︷︷︸

continuum

=
0
x +θ3(λd)
︸ ︷︷ ︸

shell

, θ3 ∈ [−h/2, h/2] .

3.1.2 Geometry of the deformed shell continuum

The basic idea of any shell theory is to describe the deformed shell continuum by kinematic

variables referring to a reference surface selected as midsurface S0. Consider an arbitrary

point P0 of the shell continuum which is moved after deformation into the position P . In

the present formulation the position vector x = x(θi) of P is approximated by a quadratic

polynomial in thickness direction θ3, having the form (Figure 3.2).

x(θi) =
0
x +θ3 1

x (θα) + (θ3)2 2
x (θα) . (3.1)

D

q 1

q 2
q 3

l d

q 1

q 2

q 3

P 0

P

i 2
i 1

i 3
X

u

x

0

0

0

Figure 3.2: Deformed process configuration

Herein,
0
x determines the deformed midsurface S. The higher order terms

I
x (I =

1, 2) are shell directors which will be used in the finite-element procedure in the two forms
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1
x=

0

λ d ;
2
x=

1

λ d , (3.2)

where d is supposed to be an inextensible director

d · d = 1 ⇒ d,α · d = 0 , (3.3)

and
I

λ (I = 0, 1) denote constant and linear stretches, respectively. The use of the

kinematic model Equation (3.1) in combination with the multiplicative decomposition

Equation (3.3) offers a large number of possibilities to achieve reliable finite element

formulations. The multiplicative decomposition of the first order term
1
x=

0

λ d permits to

decouple the numerically sensitive stretch parameter
0

λ from the inextensible director d

and provides thus a numerically stable finite-element procedure [Başar & Ding 1994;

Simo, Fox & Rifai 1989]. But the constraint d ·d = 1 to be considered in this context

requires a suitable parameterization of the director d when finite rotations are involved

in the analysis. The inclusion of a higher order displacement term
2
x at least in the

form
2
x=

1

λ d enables to simulate any cross-section wrinkling and ensures a locking-free

consideration of transverse strains E33 [Başar & Ding 1994; Başar & Ding 1995;

Sansour 1995; Verhoeven 1993]. If the kinematic model Equation (3.1) is truncated

after the linear term, a special procedure, e.g. the enhanced strain formulation (EAS),

has to be used in the numerical implementation to avoid the so-called Poisson-locking

[Betsch & Stein 1995; Büchter & Ramm 1992; Büchter, Ramm & Roehl

1994].

The consideration of a higher order displacement term
2
x has been proved not to

be of significance concerning accuracy, as well as numerical stability. Consequently, in

the present FE-formulation we neglect
2
x by using, in addition, an EAS-concept to avoid

locking. The displacement vector u of the shell continuum according to Equation(2.3)

can be expressed as :

u = x − X = (
0
x −

0

X) + θ3(λd− D) =
0
u +θ3(λd− D) . (3.4)

The displacement vector at the node i has the form:

ui = [
0
u i

1,
0
u i

2,
0
u i

3, ω
i
1, ω

i
2, ω

i
3, λ

i]T , (3.5)

0
u and ω are decomposed with respect to the gobal reference frame:

0
u i =

0
u i

1i1+
0
u i

2i2+
0
u i

3i3 =
0
u i

jij , (sum over j) , (3.6)

ωωωi = ωi
1i1 + ωi

2i2 + ωi
3i3 = ωi

jij , (sum over j) . (3.7)
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The meaning of the displacement vector
0
ui between the midsurface position vec-

tors
0

X and
0
x is clear. According to [Başar & Kintzel 2003] the directors D and

λd describe the deformation in thickness direction. From Figure (3.2) it becomes clear

that the coordinate lines θ1 and θ2 are inscribed on the midsurface and the coordinate

line θ3 points in thickness direction. We consider unit length for the director (‖D‖ = 1)

and, in fact, D is perpendicular to the midsurface S0 at the beginning. We also suppose

unit length for the current director d (‖d‖ = 1), but using the stretching variable λ the

resulting director λd can also predict thickness stretches.

3.2 Finite rotation formulation

As being pointed out in Section 3.1.2 the constraint d·d = 1 satisfied by the inextensible

shell director d causes difficulties in the numerical implementation if finite rotations are

involved in the analysis. This is due to the nonlinearity of the constraint Equation (3.3)

which does not provide a unique determination of d in the nonlinear range. As per see

[Başar 1987], by considering the unit length condition, if two components of d are given,

Equation (3.3) delivers two distinct solutions for the third one (by computing the square

root). This difficulty can be omitted by a suitable parametrization of d. The essential

idea is to describe the rotation of d by such rotational variables which ensure an a priori

satisfaction of the inextensibility constraint.

By considering smooth shells without intersection lines only two independent

quantities are needed to describe the rotation dk → dk+1 in each iteration step. We

use a rotation vector ∆ωωω to describe the finite rotation in the form of a Taylor series

expansion:

dk+1 = dk + ∆d +
1

2!
∆2d +

1

3!
∆3d + · · · . (3.8)

As per see [Başar & Weichert 2000], for the finite element formulation the first and

second-order variations are of special importance:

δd = δωωω × d, ∆δd =
1

2
(∆ωωω × (δωωω × d) + δωωω × (∆ωωω × d)) . (3.9)

3.2.1 Updated formulation

Although only two components of ωωω are needed to describe a finite rotation for smooth

shells we consider a rotation vector ωωω with three components by preventing the singularity

involved by means of a numerical procedure ( see [Başar & Kintzel 2003] for details).

This has the advantage that also composed shells can be considered in a unified fashion.
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The so-called updated rotation described in this section has been first proposed by [Simo

& Rifai 1990] and has been used in the sequel by many authors [Betsch, Gruttmann

& Stein 1996; Büchter & Ramm 1992; Başar 1993]. In this case, the basic concept

is to determine the actual position of the director with respect to the foregoing one by

means of an incremental rotation vector ∆ωωω using for this purpose the following concepts:

The orthogonality of the rotation tensor R, the equivalence between a skew-symmetric

tensor and its axial vector, and the definition of the Rodriguez rotation vector. Before

describing this procedure, we recall that during each iteration step the first, δd, and the

second variation ∆δd of the director are needed, while d is to be constructed once an

iteration step is accomplished. Therefore we can use the rotation tensor ∆ωωω to construct

the variations of the director d. If we construct the entire series expansion of Equation

(3.8), we see that the result is identical to a following relation:

dk+1 = R(∆ωωω)dk , (3.10)

with a rotation tensor R(∆ωωω) in terms of the rotation vector ∆ωωω which describes the

finite rotation of dk into the new director dk+1. The explicit form of R is defined by:

R = I +
sin ‖∆ωωω‖
‖∆ωωω‖ ∆ω̂ωω +

(1 − cos ‖∆ωωω‖)
‖∆ωωω‖2

∆ω̂ωω∆ω̂ωω , (3.11)

using ‖∆ωωω‖ =
√

∆ωωω · ∆ωωω and ∆ω̂ωω(·) = ∆ωωω × (·).
To get a global solution we have to solve the following equation:

K∆v = p , (3.12)

where K is the global stiffness matrix, ∆v the global displacement variation and p the

global load vector. Solving the above Equation (3.12) we get a solution for the unknowns

∆
0
u i, ∆ωωωi and ∆λi at each node i. The new updated variables are then computed by:

0
xk+1 =

0
xk + ∆

0
u ,

λk+1 = λk + ∆λ ,

dk+1 = R(∆ωωω)dk ,

(3.13)

at each specific node i, where the latter finite rotation is done in each iteration step. This

procedure is called updated rotation formulation.

3.3 Shape functions of a bilinear element

From Equations (2.21), (2.23) and (2.24) we can obtain the metric tensor components gij

and Gij . The desired relation in terms of θ1, θ2 and θ3 is obtained by using the kinematic
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relation Equation (3.1). The shape functions for the given bilinear element are defined

by :

N j =
1

4
(1 + θ1jθ1)(1 + θ2jθ2) , (3.14)

where

(θ1, θ2)1 = (−1,−1) node 1

(θ1, θ2)2 = (1,−1) node 2

(θ1, θ2)3 = (1, 1) node 3

(θ1, θ2)4 = (−1, 1) node 4

Then we can interpolate the position vectors X and x by means of the shape functions:

1 2

q 2

q 1

3

4

Figure 3.3: Deformed element state

X =
4∑

i=1

N i(θ1, θ2)
0

Xi +θ3(
4∑

i=1

N i(θ1, θ2)Di) , (3.15)

x =

4∑

i=1

N i(θ1, θ2)
0
xi +θ3(

4∑

i=1

N i(θ1, θ2)λi)(

4∑

j=1

N j(θ1, θ2)dj) . (3.16)

From this we obtain the base vectors:

G1 =
∂X

∂θ1
=

4∑

j=1

N j
,θ1

0

Xj +θ3(

4∑

j=1

N j
,θ1Dj) , (3.17)
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and similarly for G2. G3 is obtained as:

G3 =
∂X

∂θ3
= D =

4∑

j=1

N j(θ1, θ2)Dj . (3.18)

The current base vectors are defined by:

g1 =
∂x

∂θ1
=

4∑

j=1

N j
,θ1

0
xj +θ3

(

(

4∑

j=1

N j
,θ1λj)(

4∑

k=1

Nkdk) + (

4∑

j=1

N jλj)(

4∑

k=1

Nk
,θ1dk)

)

,

(3.19)

and similarly for g2. g3 is obtained as:

g3 =
∂x

∂θ3
= λd = (

4∑

j=1

N jλj)(

4∑

k=1

Nkdk) . (3.20)

For solving Equation (3.12) we need the first and second-order variations of the metric.

This is done by variating these quantities element-wise. For example we obtain for g3 the

following quantities:

δg3 = δλd + λδd

= (
4∑

j=1

N jδλj)(
4∑

k=1

Nkdk) + (
4∑

j=1

N jλj)(
4∑

k=1

Nk δdk
︸︷︷︸

δωωωk×dk

) ,
(3.21)

∆δg3 = ∆λδd + δλ∆d + λ∆δd

= (
4∑

j=1

N j∆λj)(
4∑

k=1

Nkδdk) + (
4∑

j=1

N jδλj)(
4∑

k=1

Nk∆dk)

+ (
4∑

j=1

N jλj)(
4∑

k=1

Nk ∆δdk
︸ ︷︷ ︸

1

2
(∆ωωωk × (δωωωk × dk) + δωωωk × (∆ωωωk × dk))

) ,
(3.22)

and similarly for g1 and g2. The variation of Gi is zero since the initial base vectors are

constant in time.
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Chapter 4

Stresses, virtual work principle and

EAS-concept

As being pointed out in Section 2 we have learned about the metric tensor components

gij, Gij and their significant role in continuum mechanics (see Equation (2.30)). Then

we have seen in Section 3 that the metric is coupled with independent displacements by

means of a kinematical assumption in Equation (3.4). But before being able to solve

Equation (3.12), we have to define constitutive relations.

4.1 Constitutive relations

A constitutive relation prescribes the material properties of a body. Here we use a new

tensor, called stress tensor. The stress tensor is work-conjugate to the strain tensor, both

are used in the principle of virtual work. As a well-known fact in linear elasticity the true

Cauchy-stresses σσσ and ǫǫǫ are work-conjugate to each other. An often used law is called

Hooke’s law and is defined by the following linear relation.

σσσ = λ (tr(ǫǫǫ)) I + 2µǫǫǫ , (4.1)

where λ and µ are called Lamé-constants. They are coupled with Young’s modulus E

and Poisson’s ratio ν. These relations are given by:

E =
µ(3λ+ 2µ)

λ+ µ
= 2µ(1 + ν), ν =

λ

2(λ+ µ)
. (4.2)

A strain energy function ψe which leads to Equation (4.1) can be defined in the form:

ψe(ǫǫǫ) =
λ

2
(tr(ǫǫǫ))2 + µ tr(ǫǫǫ2) . (4.3)
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If Equation (4.1) is considered as the derivative of a potential, we get:

σσσ =
∂ψe(ǫǫǫ)

∂ǫǫǫ
. (4.4)

Till this state we have considered linearity, now we want to depart from linearity in two

distinct steps.

4.1.1 Second Piola-Kirchhoff stress tensor

At first, the Green-Lagrange starin tensor E is used instead of the nonlinear strain

measure ǫǫǫ. The work-conjugate variable to E is the Piola-Kirchhoff stress tensor S.

Then a relation similar to Equation (4.1) is given by

S = λ (tr(G−1E))G−1 + 2µG−1 EG−1 . (4.5)

Similar relations to Equations (4.3) and (4.4) are given by:

ψe(E) =
λ

2
(tr(G−1E))2 + µ tr(G−1E)2 , (4.6)

and

S =
∂ψe(E)

∂E
. (4.7)

This constitutive law is called St. Venant-Kirchhoff-law. Note that we have used

the metric tensors G and G−1 in Equations (4.5) and (4.6) to emphasize that S has a

contra-variant decomposition:

S = Sij Gi ⊗ Gj , (4.8)

and S can be expressed in component form as:

Sij = λ (tr(G−1E))Gij + 2µGikEklG
lj , (4.9)

that means we raise the components of E by means of the metric Gij . We want to give

a short explanation, why we have written tr(G−1E) and not simply tr(E). If we first

consider the linear strain tensor ǫǫǫ, note that we assumed ǫǫǫ to be decomposed with respect

to an orthonormal coordinate system Equation (2.7):

ǫǫǫ = ǫij ii ⊗ ij . (4.10)

Since the dual basis to ii is the same basis (ii = ii) we do not distinguish between co- or

contra-variant components. Thus the trace reads as:

tr(ǫǫǫ) = ǫ11 + ǫ22 + ǫ33 . (4.11)
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However, this is not the case for a curvilinear basis Gi or gi. Then we distinguish between

co- and contra-variant components and we can not simply write

tr(E) 6= E11 + E22 + E33 , (4.12)

since a trace must be an invariant. And an invariant is always computed in mixed-variant

form i.e. in mixed-variant decomposition. For example:

tr(A) = A1
.1 + A2

.2 + A3
.3 ,

or

tr(A2) = A1
.kA

k
.1 + A2

.lA
l
.2 + A3

.mA
m
.3 .

(4.13)

4.1.2 Neo-Hooke-law

Now, we donnot only use a nonlinear strain measure but also define the constitutive law

itself in non-linear form. The so-called Neo-Hooke-law is defined by:

ψe =
1

2
κ (ln(Je))2 +

1

2
µ [Je−2/3 tr(G−1C) − 3] , (4.14)

where Je is the square root of the third invariant of C:

Je =
√

det(G−1C) , (4.15)

and the bulk modulus κ is defined by:

κ =
E

3(1 − 2ν)
, µ =

E

2(1 + ν)
. (4.16)

The constant quantity 3 is used in Equation (4.14) to get a zero value for ψe in the

reference state. Using Equation (2.19), we can see that for zero strains (E = 0) the right

Cauchy-Green-tensor C is identical to the metric tensor G:

E = 0 ⇒ C = G . (4.17)

Then we obtain for the second term in Equation (4.14):

1

2
µ [det(G−1G)−1/3 tr(G−1G) − 3] . (4.18)

Since GijGjk = δi
k is Kronecker-delta, we get :

1

2
µ [det(I)−1/3 tr(I) − 3] =

1

2
[3 − 3] = 0 , (4.19)
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if we consider I in matrix representation:

I =










1 0 0

0 1 0

0 0 1










. (4.20)

However, we cannot use Equation (4.7), because ψe does not depend on E but on C

only. By using the chain rule, it can be proved that the following relation holds:

S = 2
∂ψe

∂C
. (4.21)

Differentiating Equation (4.14) with respect to C we arrive at the following stress tensor

S = κ ln(Je)C−1 + µ Je−2/3

(

G−1 − 1

2
tr(G−1C)C−1

)

, (4.22)

where C−1 = gijGi ⊗ Gj has been used. And for zero strains (C = G orC−1 = G−1)

the stress tensor vanishes. Equation (4.14) is just a special form of a nonlinear material

law. However, for our considerations it suffices to consider only this Neo-Hooke-law.

4.2 Energy conjugate quantities

As previously mentioned S and E are called work-conjugate because they form the stress

power:

P = S : Ė . (4.23)

Using the definition for E we obtain an alternative expression for the stress power

P = S :
1

2
Ċ, Since Ė =

1

2
(Ċ − Ġ) =

1

2
Ċ , (4.24)

if we consider the time-independence of the second-order identity tensor Ġ = İ.

4.3 Second law of thermodynamics

The second law of thermodynamics in the isothermal case reads as:

D = P − ψ̇ ≥ 0 . (4.25)

For elastic materials this relation has to be fulfilled identically that means the whole

energy is stored in the material in the form of elastic lattice distortions. This distortion
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is reversible, since when the strains are relaxed the former structure of the lattice is

recovered. That means for vanishing strains we get back the initial structure of the

material, which is called reversibility.

For irreversible materials some proportions of the energy exerted on the material

are dissipated and cannot be recovered. This is the case for plasticity. However, for pure

reversibility the dissipated energy D is zero and we can state the identity in Equation

(4.25) . If we consider, in addition, the dependence of ψ on C alone we get:

D = S :
1

2
Ċ − ψ̇ = S :

1

2
Ċ − ∂ψ

∂C
: Ċ = (S− 2

∂ψ

∂C
) :

1

2
Ċ = 0 , (4.26)

which states that for any strain path the hyperelastic relation Equation (4.21) has to be

satisfied. To solve the global equation Equation (3.12) we need to construct the stiffness

matrix and the load vector. These tensors can be obtained by using the virtual work

principle.

4.4 Principle of virtual work

The principle of virtual work postulates that the external and the internal virtual work

are the same:

δW int = δW ext , (4.27)

that means the internal virtual work stored in the material is equal to the external virtual

work done on the material by external forces. For example, if we consider contact forces

t and body forces b as external forces the following relation holds :

W ext =

∫

Ω

ρ0 b · v dV +

∫

∂Ω

t · v dA , (4.28)

where ∂Ω is the boundary of Ω. For hyper-elasticity the inner virtual work is obtained

by means of a variation of the strain energy function ψe:

W int =

∫

Ω

ψe dV , (4.29)

which leads to the following formula for δW int:

δW int = δ

∫

Ω

ψe dV =

∫

Ω

δ ψe dV =

∫

Ω

∂ψe

∂C
: δCdV =

∫

Ω

S :
1

2
δC dV . (4.30)

Equation (4.27) represents the related stationary condition of the potential energy and

demands in this form minimum of energy. To solve Equation (4.27) we have to employ

a Newton-Raphson-procedure.
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4.4.1 Linearization

At first we have to linearize this equation giving:

δW int − δW ext +
∂δW int

∂v
· ∆v − ∂δW ext

∂v
· ∆v = 0 . (4.31)

Since the exact solution of ψe(C(v)) is nonlinear, the linear approximation is a first step

to the solution. To obtain the real solution we have to impose the linearized formulation

Equation (4.31) in a number of iterative steps which finally converge to the result. At

the beginning of each iteration step the linearized formulation can be given in the form

of a relation of the form Equation (3.12), that means we have to find the quantities K

and p. At first, we use conservative forces that means b and t in Equation (4.28) are

invariant during the deformation process, whereas non-conservative forces are dependent

on the displacement v. Since we use conservative forces the last term in Equation (4.31)

vanishes identically. By equating Equation (4.31) with Equation (3.12) we can find the

following relations:

K =
∂δW int

∂v
, p = δW ext − δW int ⇒ K∆v = p . (4.32)

In order to find the stiffness matrix K, we proceed as follows:

∂δW int

∂C
: ∆C =

∫

Ω

1

2
δC :

∂S

∂C
: ∆C +

∫

Ω

S :
1

2
∆δC dV ,

=

∫

Ω

1

2
δC : 2

∂S

∂C
:

1

2
∆C +

∫

Ω

S :
1

2
∆δC dV ,

=

∫

Ω

1

2
δC : C

e :
1

2
∆C

︸ ︷︷ ︸

material stiffness

+

∫

Ω

S :
1

2
∆δC dV

︸ ︷︷ ︸

geometric stiffness

.

(4.33)

To get a relation dependent on ∆v which is the variation of the displacement vector, we

have to compute the variation of C. Since

δC = δgijG
i ⊗Gj + gijδG

i ⊗Gj + gijG
i ⊗ δGj , (4.34)

and by virtue of the constancy of the base vectors Gi and Gi (δGi = 0) we finally obtain

in component form:

∂δW int

∂C
: ∆C =

∫

Ω

1

2
δgijC

eijkl1

2
∆gkldV

︸ ︷︷ ︸

material stiffness

+

∫

Ω

Sij 1

2
∆δ gijdV

︸ ︷︷ ︸

geometric stiffness

. (4.35)

The second term in Equation (4.35) is called geometric stiffness since it measures a

change in δW int solely with respect to a metric change whereas the first term measures



4.5 Enhanced assumed strain formulation 29

a change with respect to a change in S (material law) and is called material stiffness. A

short look at Section 3.3 shows how we can arrive at the variations of the base vectors.

And from these quantities we obtain the corresponding variations of the metric tensor

components as given below:

δgij = δgi · gj + gi · δgj,

∆δgij = ∆gi · δgj + δgi · ∆gj + ∆δgi · gj + gi · ∆δgj .

(4.36)

Since the variations of the base vectors are dependent on the independent kinematical

quantities defined in Section 3, which are
0
u, ωωω and λ, their variations are finally used

to find an equation in dependence of the independent displacement variations ∆v. If we

carry out the differentiation to obtain 2
∂S

∂C
=

∂S

∂E
we get for the above introduced St.

Venant-Kirchhoff-material law Equation (4.5):

C
e = λG−1 ⊗ G−1 + µ(G−1

2× G−1 + G−1 ×G−1) (4.37)

by using tensor products ⊗, 2× and ×, which are defined by :

(A ⊗ B)ijkl = AijBkl ,

(A 2× B)ijkl = AikBjl ,

(A × B)ijkl = AilBjk ,

(4.38)

or in component form:

C
eijmn = λGijGmn + µ(GimGjn +GinGjm) . (4.39)

4.5 Enhanced assumed strain formulation

So far we have remarked that the finite shell formulation suffers from serious deficiencies

called locking. This locking phenomena have different causes and must be prevented by

certain procedures.

4.5.1 Shear locking, Assumed strain formulation

Shear locking is an important locking phenomenon which occurs in thin shell structures.

If we consider simple bending deformations and reduce the height of the shell, the shear

modulus tends to zero with order o(h) whereas the bending modulus tends to zero with
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order o(h3). Therfore the shear modes are overestimated for the limit h → 0. The

results are not the same as for a Kirchhoff-Love-type kinematical assumption which

represents the solution for very thin shells. To remove shear locking we employ an assumed

strain formulation [Başar & Kintzel 2003] which has been proposed by [Bathe &

Dvorkin 1985]. The procedure is such: We compute the shear strains E13 = E31

and E23 = E32 at certain sampling points A(0,1), B(-1,0), C(0,-1) and D(1,0) and then

interpolate these values bilinearly to obtain corrected shear strains according to :

E13 = 1
2
(1 + θ2)EA

13 + 1
2
(1 − θ2)EC

13,

E23 = 1
2
(1 + θ1)ED

23 + 1
2
(1 − θ1)EB

23 .

(4.40)

By doing this we obtain for the simple bending deformation case vanishing shear strains

such that an overestimation cannot occur.

4.5.2 Enhanced strain formulation

In particular all other locking phenomena for bilinear elements are caused by stiffening

effects due to couplings between certain strain modes. For example, in in-plane distortions

the couplings between the in-plane strains E11, E22 and E12 = E21 lead a stiffening effect

which can be in fact avoided by adding incompatible strain modes Ẽ to the solution.

Incompatible strain mode fields are in contrast to compatible strain mode fields, which are

computed from the kinematical variables, not smooth and can have jumps from element

to element. Therefore they are called incompatible strain mode fields. Some of these

additional strain modes are activated in the solution process and lead to a weakening

effect, thus reducing locking. The above described technique is called enhanced strain

formulation since we enhance the strains by adding additional strain modes to the solution.

A description of this technique can be found in [Başar & Kintzel 2003]. Here we recall

only the important facts. As variational basis we don’t use the inner principle of virtual

work, which is purely displacement oriented, but a Hu-Washizu-principle, where the

displacements, the stresses and strains can be prescribed independently. By postulating

an orthogonality condition for the incompatible strain- and stress-modes the additional

stress term drops out, such that in the end we obtain a principle of virtual work using

solely compatible and incompatible strains in the form:

δW int(E, Ẽ) = δW ext . (4.41)

The process of computing K and p proceeds along similar lines with the difference that

now we have also to variate with respect to the independent strain modes Ẽ (Ē = E+Ẽ).
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The result is :

K =
∫

Ω
1
2
δC : Ce : 1

2
∆C dV +

∫

Ω
δ Ẽ : Ce : ∆ Ẽ dV

+
∫

Ω
1
2
δC : Ce : ∆ Ẽ dV +

∫

Ω
δ Ẽ : Ce : 1

2
∆C dV ,

(4.42)

plus the geometric stiffness term (see Equation (4.35)) and

p = δW ext −
∫

Ω

S :
1

2
δC dV −

∫

Ω

S : δ Ẽ dV . (4.43)

A further consequence is that the deformation gradient F now has the following polar

decomposition:

F̄ = RŪ = v̄R , (4.44)

where Ū represents the sum of compatible (resulting in U or v) and incompatible stretch-

ing modes. Since we are adding Ẽ on element level we are able to condensate the addi-

tional unknowns, which we call αi (i = 1, 2, · · · , 11), on element level. Thus we obtain

the typical form of Equation (3.12) solely in dependance of the compatible displacement

variation ∆v:

K̃T ∆v = p̃ , (4.45)

where K̃T and p̃ are defined according to [Başar & Kintzel 2003]. After solving

Equation (4.45) we can compute vk+1 and with the solution for ∆v we can update the

additional unknown vectorc αk → αk+1 which is like the director updated in each itera-

tion step. Since Ẽ is added to the strains but not to the displacements v the deformation

gradient F does contain only compatible modes in Equations (2.15) and (2.16). How-

ever, if we need F̄ also including incompatible stretches we have to employ a backward

substitution process explained in the following:

• At first we compute the stretch tensor tensor U from the compatible right Cauchy-

Green tensor C using principal stretches λ2
A by solving the characteristic polyno-

mial in the following closed form ([Simo & Hughes 1998]):

Let IA , (A = 1, 2, 3) be the principal invariants of C, defined as

I1 = tr(G−1C),

I2 =
1

2
(I2

1 − tr(G−1CG−1C)),

I3 = det(G−1C),

(4.46)



32 Chapter 4: Stresses, virtual work principle and EAS-concept

then

b = I2 − I2
1

3
,

c = − 2

27
I3
1 +

I1 I2
3

− I3 ,

If (|b| ≤ tol) then :

xA = −c1/3 ,

or else

m = 2

√

−b
3
,

n =
3 c

m b
,

If(n > 1) (rounding error) then n = 0.9999999999999999

t =
arctan

[√
1 − n2/n

]

3
,

xA = m cos
[

t+ 2(A− 1)
π

3

]

,

endif

λ2
A = xA +

I1
3
.

(4.47)

• Then we compute the stretch tensor U

U =
1

IUIIU − IIIU

[
−G−1CG−1C + (I2

U − IIU)G−1C + IUIIIUI
]
, (4.48)

where the invariants of U are given by

IU = λ1 + λ2 + λ3 ,

IIU = λ1λ2 + λ1λ3 + λ2λ3 ,

IIIU = λ1λ2λ3 ,

(4.49)

• Using the deformation gradient F, which is known from the compatible displace-

ments v we obtain the unique rotation tensor R by computing

R = FU−1 . (4.50)

• Now we derive the stretch tensor Ū from the right Cauchy-Green tensor C +

C̃ which now includes both compatible and incompatible stretches, using again
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Equations (4.46), (4.47), (4.48) and considering the corresponding invariants from

Equation (4.49) which belong to Ū by using the same metric tensor G in both

calculations.

• Finally determination of the new deformation gradient F̄ = RŪ = FU−1 Ū.
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Chapter 5

Plasticity

5.1 Introduction

Plastic deformations in metals are characterized by a movement of dislocations along local

glide planes within the lattice structure. During this gliding process atoms move to other

positions away from their neighbouring atoms (recombination) in the atomic structure,

but the lattice structure itself is not altered. Therefore we say that there is no memory

effect present in plasticity in contrast to elasticity where the lattice structure is elastically

deformed and distorted. The main problem is to transport the events on the microscale

to the macroscale. For this purpose there are two main approaches. One approach is to

describe the dislocation movements, the debonding and rebonding of neighbouring atoms

in mathematical terms and to transport these characteristics one or more scales upwards.

Then the material behaviour on the macroscale is in fact dependent on atomic move-

ments and debonding processes. This approach is called homogenisation, the complex

heterogeneous structure is like in integral calculus made smoother or more homogeneous

by going a scale upwards. Another approach is to describe the material behavior directly

on the macroscale. This can be done by disregarding the actual process which occurs in

the material. This approach is called phenomenological.

5.2 J2-plasticity

To describe plastic deformations phenomenologically we have at first to figure out the

main characteristics of plastic deformations on the macroscale. One characteristic is the

propensity to glide along slipbands (now on a greater scale), if the material is subjected to

shearing. In contrast, if we compress or expand a metal by subjecting it to a hydrostatical
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loading for example, i.e. if we push or pull in all directions, nothing happens. Another

characteristic of the material is yielding above a certain yield limit. This limit is not

invariant (like in ideal plasticity), but can grow with increasing deformation. The latter

process is called hardening. Now we want to express these characteristics in mathematical

terms. It is advantageous to consider, first, Cauchy stresses in principal axes. Since

plasticity is independent on a hydrostatical loading, the mathematical relation has not to

depend on the trace of the stress tensor

tr(σσσ) = σ1 + σ2 + σ3 . (5.1)

However, it should depend on shear stresses, which are given by

(σ1 − σ2)

2
,

(σ1 − σ3)

2
,

(σ2 − σ3)

2
. (5.2)

If we compute the deviatoric stresses in the form

dev(σσσ) = σσσ − 1

3
tr(σσσ)i (5.3)

by substracting the trace, and evaluate the J2-invariant, we get:

√

3

2
(σσσ − 1

3
tr(σσσ)i) : (σσσ − 1

3
tr(σσσ)i) =

√

(σ1 − σ2)2

2
+

(σ1 − σ3)2

2
+

(σ2 − σ3)2

2
(5.4)

We can see that the above term represents a weighted some of the shear stresses which

are used in Equation (5.2), where initially no loading direction is preferred. Now we

want to relate this quantity to the yield limit in the uniaxial stress case. Then the stress

tensor is given by:

σσσ =










σY0 0 0

0 0 0

0 0 0










, (5.5)

and evaluating the second term in Equation (5.4) we simply get σY0 . This means, a

condition to be fulfilled at the point of yielding is:

√
√
√
√

3

2
dev(σσσ) : dev(σσσ)
︸ ︷︷ ︸

J2−invariant

− σY0 = 0 , (5.6)

or written in another form:

F =
√

dev(σσσ) : dev(σσσ) −
√

2

3
σY0 = 0 . (5.7)
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Before reaching the yield limit the left-hand side term in F is obviously smaller than σY0

therefore for elastic behaviour F < 0 is satisfied. In this case F can be used as a kind of

switch:

F < 0 → elastic behaviour, F = 0 → plastic behaviour , (5.8)

and therefore F is called yield condition. Note that the condition F > 0 makes no sense,

since the J2-invariant can not exceed the yield limit. However, if the yield limit is not

fixed, but grows with increasing deformations, we may substitute σY0 by a variable term

q(α) in terms of the equivalent plastic strain α, which gives:

F =
√

dev(σσσ) : dev(σσσ) −
√

2

3
q(α) , (5.9)

where q = σY0 + Hα is the sum of the initial yield limit σY0 and a term α representing

a strain-like variable where H is the hardening modulus. Now we turn to a form of the

yield function, which will be used in the finite strain regime. It is given by :

F =
√

dev(gτττ)dev(gτττ) : i −
√

2

3
q(α) ≤ 0 . (5.10)

Here we have used Kirchhoff-stresses τττ which are defined in contra-variant decompo-

sition:

τττ = τ ijgi ⊗ gj , (5.11)

τττ is coupled with the second Piola-Kirchhoff-stress tensor S by means of push-

forward-relation:

S = F�(τττ ), τττ = F�(S) , (5.12)

i.e. the components are, by using convective coordinates, like in Equation (2.34) (Eij =

eij) the same :

τ ij = Sij . (5.13)

Here we have used the spatial metric tensor g in F , in contrast to G which had been

employed to transform S and E in Equation (4.5) in the context of elasticity, to lower

the components of τττ . In tensor notation the deviatoric part of τττ then reads as :

dev(gτττ) = g(τττ − 1

3
tr(gτττ)g−1) = gτττ − 1

3
tr(gτττ)i . (5.14)

5.2.1 Plastic deformation measure

For F < 0 the elastic behaviour is described by an elastic law which has to be satisfied for

a tiny amount below F = 0 and still has to be fulfilled in the limit for F tending to zero.
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But, in the plastic regime (F = 0), τττ has to be either fixed with increasing deformations

like in ideal plasticity or can increase by a certain amount due to hardening. Therefore the

total deformations which are increasing anyway can not be purely elastic, since to obtain

a steady stress tensor the elastic deformations have to be also fixed. Therefore we have

to introduce a plastic deformation measure. In the linear theory an additive relationship

is typically used:

ǫǫǫ = ǫǫǫe + ǫǫǫp , (5.15)

where ǫǫǫe are the elastic and ǫǫǫp are the plastic linear strains. Whereas the total strains

ǫǫǫ are computed from the total displacements according to Equation (2.7) the elastic

strains and plastic strains are somehow artificial and are not computed from any kind

of displacement. Thus we call ǫǫǫp ( also ǫǫǫe) an internal variable since we cannot derive

these values by pure experimental observations like an external variable, e.g. ǫǫǫ, which

can be derived from the total displacements u, which in turn, can be measured at the

specimen. In the finite strain regime we employ instead of the above introduced additive

relationship Equation (5.15) a multiplicative decomposition of the deformation gradient

into an elastic and plastic part

F = FeFp . (5.16)

This postulate can be motivated as follows : If we have pure plasticity the deformation

gradient is given by F = Fp which is purely plastic. Now, if we depart from this state

and have elastic deformations, the elastic deformation gradient is added to the current

deformation gradient Fp resulting in F = FeFp. If we now relax the material we arrive

again at the initial state which had been F = Fp.

5.2.2 Plasticity formulated in the intermediate configuration

If we consider the plastic or elastic deformation gradient like in Equation (2.22) or

Equation (2.40) we see in fact that by the above decomposition Equation (5.16) we

introduce two further base vectors :

Ĝi = FpGi = Fe−1gi , Ĝi = Fp−TGi = Fe ∗gi , (5.17)

along with the following metric tensors

Ĝ = ĜijĜ
i ⊗ Ĝj , Ĝ−1 = ĜijĜi ⊗ Ĝj . (5.18)

These tensors define a so-called intermediate configuration, which is intermediate between

the reference and current configuration. This configuration is stress-free, since the elastic

stresses are relaxed, and incompatible. Since there is no displacement field from which

we can derive Fp, i.e. no smooth and compatible field, it is called incompatible.
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Now we make the following assumption: Elastic strains are solely defined by

means of Fe such that similar to Equation (2.20) and Equation (2.30) we can get the

following relation:

Ê =
1

2
(Ĉ − Ĝ) =

1

2
(Fe ∗ gFe − Ĝ) =

1

2
(gij − Ĝij)Ĝ

i ⊗ Ĝj , (5.19)

where Ĉ is the so-called elastic right-Cauchy-Green-tensor defined in component form

by Ĉij = gij that means, we substract the intermediate metric Ĝij from the spatial metric

gij. For pure elasticity we can obtain the elastic stress tensor as given below

Ŝ =
∂ψe(Ê)

∂Ê
, (5.20)

which is just the pull-back of τττ or the push-forward of S:

Ŝ = Fe �(τττ) , Ŝ = Fp
�(S) . (5.21)

The components : Ŝij = Sij = τ ij are for convective coordinates the same like in

Equation (5.13).

5.2.3 Strain energy in the intermediate configuration

Using the intermediate metric we may define a St.-Venant-Kirchhoff-hyperelastic

law:

ψe(Ê) =
λ

2
(tr(Ĝ−1Ê))2 + µ tr(Ĝ−1Ê)2 , (5.22)

or a Neo-Hooke-law in the form:

ψe =
1

2
κ (ln(Je))2 +

1

2
µ [Je−2/3 tr(Ĝ−1Ĉ) − 3] , (5.23)

with

Je =

√

det(Ĝ−1Ĉ) , (5.24)

where Ĉ = Fe �(g) = Fe ∗ g Fe. We can also use the following law instead of Equation

(5.20)

Ŝ = 2
∂ψe(Ĉ)

∂Ĉ
. (5.25)

Besides the elastic strain energy function ψe which defines the reversible amount of energy

stored in the material, a plastic part ψp can be introduced, which defines the irreversible

part of energy stored in the material due to hardening, as follows:

ψp = σY0α +
1

2
Hα2 , (5.26)
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such that

ψ = ψe + ψp . (5.27)

Similar to Equation (2.43) the following relations holds:

g = Fe
�
(Ĉ) , Ĉ = Fe �(g) , be = Fe

�
(Ĝ−1) , Ĝ−1 = Fe �(be) , (5.28)

where the elastic left Cauchy-Green-tensor be = Fe Ĝ−1 Fe ∗ has been introduced. By

virtue of Equation (5.28) any tensor in Equation (5.23) can be pushed forward and we

end up with the following form of the constitutive law:

ψe =
1

2
κ (ln(Je))2 +

1

2
µ [Je−2/3tr(beg) − 3] , (5.29)

with

Je =
√

det(beg) . (5.30)

To put it short, any invariant (trace, determinant) in terms of (Ĝ−1Ĉ) is identical to

an invariant in terms of (beg). The similarity of both expressions becomes clear if we

consider the component relation of the trace tr(beg) holding for convective coordinates:

tr(Ĝ−1Ĉ) = Ĝijgij = tr(beg) , (5.31)

that means in convective coordinates the components of Ĉ are simply gij and those of

be are Ĝij which obviously proves the coincidence of both relations Equation (5.23) and

Equation (5.29). In the literature [Başar & Eckstein 1997] the metric tensor g is

typically left out and Equation (5.30) is simply written as:

Je =
√

det(be) . (5.32)

However, since in fact the spatial metric g has to be used to form the invariant Je, we

make this dependence on g explicit.

5.3 Evolution equations

To find the constitutive relations we have to consider the local dissipation inequality,

which is similar to Equation (4.26):

D = S :
1

2
Ċ − ψ̇ ≥ 0 ,

= Fp
�(S) :

1

2
Fp

�(Ċ) − ∂ψ

∂Ĉ
:

˙̂
C − ∂ψ

∂Ĝ−1
:

˙̂
G−1 − ∂ψ

∂α
α̇ ≥ 0 ,

= Ŝ :
1

2
Fp

�(Ċ) − ∂ψ

∂Ĉ
:

˙̂
C − qα̇ ≥ 0 .

(5.33)
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Here we have assumed not equality (=0) but inequality (≥ 0) since some energy is dissi-

pated and not stored in ψ. Ĝ−1 represents an identity tensor and the time derivative of

an identity tensor is zero. Also we have considered

q =
∂ψ

∂α
. (5.34)

from Equation (5.26) which delivers

q = σY0 +Hα . (5.35)

We use a so-called Lie-derivative of Ĉ [Başar & Weichert 2000] which is defined by:

Lvp
(Ĉ) = Fp

�

˙
(Fp �(Ĉ)) . (5.36)

Using C = F�(g) = Fp �(Ĉ), this is identical to

Lvp(Ĉ) = Fp
�(Ċ) =

˙̂
C + L̂p ∗Ĉ + ĈL̂p ⇒ ˙̂

C = Fp
�(Ċ) − L̂p T Ĉ − ĈL̂p , (5.37)

where L̂p = ḞpFp−1 is the plastic velocity gradient. Putting Equation (5.37) into the

dissipation inequality we get:

D = Ŝ :
1

2
Fp

�(Ċ) − ∂ψ

∂Ĉ
: (Fp

�(Ċ) − L̂p ∗Ĉ − ĈL̂p) − qα̇ ≥ 0 , (5.38)

which must hold for any possible tensor Fp
�(Ċ) and therefore delivers the elastic law

Ŝ = 2
∂ψ

∂Ĉ
, (5.39)

and a reduced dissipation inequality

∂ψ

∂Ĉ
: (L̂p ∗Ĉ + ĈL̂p) − qα̇ ≥ 0 , (5.40)

which can be transformed into

2 Ĉ
∂ψ

∂Ĉ
: L̂p − qα̇ ≥ 0 (5.41)

Comparing with Equation (5.39) we finally find the following expression for the dissipa-

tion inequality:

Ĉ Ŝ : L̂p − qα̇ ≥ 0 , (5.42)

which by a push-forward with Fe(g = Fe
�
(Ĉ), τττ = Fe

�
(Ŝ), lp = Fe

�
(L̂p)) leads to

gτττ : lp − qα̇ ≥ 0 . (5.43)
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We see that the tensor gτττ and the scalar q are variables which also appear in the yield

function F . As next step we form the so-called Kuhn-Tucker condition γ̇F , where we

have introduced a strain-like scalar γ̇ which is called consistency-parameter, and add this

value to the dissipation inequality. If the current material behaviour is elastic (F < 0)

the consistency parameter is zero (γ̇ = 0). For plastic material behaviour (F = 0) the

consistency parameter takes a certain value but is always positive (γ̇ > 0). Therefore

we see, that the term γ̇F is always zero. It doesn’t matter if we have elastic or plastic

material behaviour, that means we can set :

gτττ : lp − qα̇− γ̇F ≥ 0 . (5.44)

Now we know that there is some energy dissipated. Since the laws of physics are somehow

always extremum principles we could be right to demand maximum of dissipated energy

also. By doing this, we have a nice possibility to derive the evolution laws for lp and α

simply by demanding a maximum. By recalling the familiar laws of differential calculus

we know that the first derivative has to be zero. Therefore, if we differentiate this equation

firstly by gτττ and secondly by q then we obtain the following two distinct results:

lp = γ̇
∂F

∂gτττ
= γ̇ n, α̇ = −γ̇ ∂F

∂q
, (5.45)

i.e. we obtain so-called normality rules, where n is the normal to the yield surface, which

is always perpendicular to F at the current point of the yield surface. Using Equation

(5.45) and integrating we obtain the following evolution laws:

Fp
(n+1) = exp(∆ γ N̂(n+1))Fp

(n) ,

α(n+1) = α(n) +

√

2

3
∆ γ ,

(5.46)

where we have used the pull-back of n in the form N̂ = Fe �(n). The above law Equation

(5.46.1) is an exponential function which is the exact solution to the following kind of

evolution law:

L̂p = ḞpFp−1 = γ̇N̂ ⇒ Fp
(n+1) = exp(∆γ N̂(n+1))F

p
(n) , (5.47)

where L̂p is the plastic velocity gradient.

5.4 Isotropic elasto-plasticity

The model developed so far allowed the consideration of anisotropic elastic material be-

haviour. However, then all nine components of the plastic deformation gradient have to
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be stored. If we allow only isotropic elastic behaviour it is also possible to consider an

evolution of the elastic left Cauchy-Green tensor which has only six components if we

consider its symmetry. Thus, instead of describing the material model in the intermedi-

ate configuration, we will develop the material model in the current configuration once

more for direct comparison. Since the main relations are just the push forward of those

of the intermediate configuration the component relations of the constitutive laws are

the same. We will give the component expressions of the constitutive relations shortly.

Now we need not only the differentiations of those laws with respect to the elastic right

Cauchy-Green tensor but also with respect to the elastic left Cauchy-Green tensor. Thus

the corresponding relations are given.

5.4.1 Constitutive laws

ψe =
1

2
κ (lnJe)2 +

1

2
µ (Je−2/3 tr(gbe) − 3)

τττ = 2
∂ψe

∂g
= κ lnJe g−1 + µ Je−2/3 (be − 1

3
Ibe g−1)

gτττ = κ lnJe i + µ Je−2/3 (gbe − 1

3
Ibe i)

∂τττ

∂be
=

1

2
κ g−1 × be−1 + µ Je−2/3

(

−1

3
be × be−1 +

1

9
Ibe g−1 × be−1

+
1

2
(i ⊗ i + i 2× i) − 1

3
g−1 × g

)

∂gτττ

∂g
=

1

2
κ (i × g−1) + µ Je−2/3

(
1

2
(i ⊗ be + i 2× be)

−1

3
gbe × g−1 − 1

3
i × be +

1

9
Ibe i × g−1

)

∂gτττ

∂be
=

1

2
κ i × be−1 + µ Je−2/3

(

−1

3
gbe × be−1 +

1

9
Ibe i × be−1

+
1

2
(g ⊗ i + g 2× i) − 1

3
i × g

)
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c′ = κ ((g−1 × g−1) − lnJe (g−1 ⊗ g−1 + g−1
2× g−1))

+
2

3
µ Je−2/3

(

−be × g−1 +
1

3
Ibe g−1 × g−1 − g−1 × be

+
1

2
Ibe (g−1 ⊗ g−1 + g−1

2× g−1))

These relations expressed in component representation read as :

τ ij = κ lnJe gij + µ Je−2/3

(

Ĝij − 1

3
(gopĜ

po)gij

)

gτi
j
. = κ lnJe δj

i + µ Je−2/3

(

gimĜ
mj − 1

3
(gopĜ

po)δj
i

)

∂τττ

∂be
i
. jk

l

.
=

1

2
κ gilĜjk + µ Je−2/3 (−1

3
ĜilĜjk +

1

9
(gopĜ

po)gilĜjk

+
1

2
(δi

jδ
l
k + δi

kδ
l
j) −

1

3
gilgjk)

∂gτττ

∂g
i
jkl
... =

1

2
κ δl

ig
jk + µ Je−2/3

(
1

2
(δj

i Ĝ
kl + δk

i Ĝ
jl)

−1

3
gimĜ

mlgjk − 1

3
δl
iĜ

jk +
1

9
(gopĜ

po)δl
ig

jk

)

∂gτττ

∂be ijk
l
. =

1

2
κ δl

iĜjk + µ Je−2/3 (−1

3
gioĜ

olĜjk +
1

9
(gopĜ

po)δl
iĜjk

+
1

2
(gijδ

l
k + gikδ

l
j) −

1

3
δl
igjk)

c′ ijkl = κ
(
gilgjk − lnJe(gijgkl + gikgjl)

)
+

2

3
µ Je−2/3

(
1

2
(gopĜ

po)(gijgkl + gikgjl)

+
1

3
(gopĜ

po)gilgjk − Ĝilgjk − gilĜjk

)

Note that we use here and in what follows a new differentiation convention in the following

form:
∂A

∂B
=
∂Aij

∂Bkl

Gi ⊗ Gk ⊗ Gl ⊗ Gj .

Also we use two new types of double contraction laws denoted by q a and a q where a filled

circle q (unfilled circle a) represents contraction with the inner (outer) base vectors of a
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fourth-order tensor. Note that for a second-order tensor a distinction between inner and

outer bases is irrelevant.

5.4.2 Alternative derivation of the evolution equations

The strain energy function is given by :

ψ = ψe(be, g) + ψp(α) (5.48)

Thus we obtain the dissipation inequality in the following form :

τττ : d − ψ̇ ≥ 0

⇔ τττ : d− ∂ψ

∂be
: ḃe − ∂ψ

∂α
α̇ ≥ 0

⇔ τττ : d− ∂ψ

∂be
: (Lv(be) + lbe + bel

∗) − ∂ψ

∂α
α̇ ≥ 0

⇔ τττ : d− ∂ψ

∂be
: Lv(be) − g−1 ∂ψ

∂be
be : gl− be ∂ψ

∂be
g−1 : l∗g − ∂ψ

∂α
α̇ ≥ 0 .

(5.49)

where, in turn, the material time derivative of the spatial metric g vanishes. Also, the Lie-

derivative [Başar & Weichert 2000] has been used. If we now consider an isotropic

hyperelastic law the following holds

g−1 ∂ψ

∂be
be = be ∂ψ

∂be
g−1 =

∂ψ

∂g
, (5.50)

such that with the definition for the strain rate d = 1/2(gl + l∗g) we obtain :

(τττ − 2 g−1 ∂ψ

∂be
be) : d− ∂ψ

∂be
: Lv(be) − ∂ψ

∂α
α̇ ≥ 0 . (5.51)

At first, we get the hyperelastic material law :

τττ = 2 g−1 ∂ψ

∂be
be = 2

∂ψ

∂g
, (5.52)

and a reduced dissipation inequality

− ∂ψ

∂be
: Lv(be) − ∂ψ

∂α
α̇ ≥ 0 , (5.53)

from which by considering Equation (5.52) we get :

−1

2
gτττ : Lv(be)be−1 − qα̇ ≥ 0 , (5.54)
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with

q =
∂ψ

∂α
. (5.55)

The yield criterion is assumed as

F =
√

dev(gτττ)dev(gτττ) : i −
√

2

3
q(α) ≤ 0 . (5.56)

Now, by means of normality rules emanating from the principle of maximum dissipation,

we get the following evolution equations :

1

2
Lv(be)be−1 = −γ̇n = −γ̇ ∂F

∂(gτττ )
,

α̇ = γ̇

√

2

3
.

(5.57)

The above evolution equations can be integrated according to the following rules:

be
(n+1) = exp(−∆γ n(n+1))b

e
(trial) exp(−∆γn∗

(n+1)) , (5.58)

and

α(n+1) = α(n) + ∆γ

√

2

3
, (5.59)

where be
(trial) is simply the push-forward of be

(n) :

be
(trial) = F� (n+1)

(

F�

(n) (be
(n))
)

, (5.60)

with the component expressions

be
(trial) = Ĝij

(n)gi ⊗ gj , be
(n+1) = Ĝij

(n+1)gi ⊗ gj (5.61)

The discriminand of the yield function reads as:

tr((gτττ)2) − 1

3
(tr(gτττ))2 . (5.62)

From that we obtain the normal to the yield surface in the form :

n =
∂F

∂(gτττ)
=

1√· · ·

(

(gτττ)T − 1

3
tr(gτττ)i

)

. (5.63)

In this case the exponential law Equation (5.58) accomplishes an update of the metric

of the intermediate configuration from state (n) to the current state (n + 1).
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5.4.3 Isotropic plastic model in eigenvalues

Now we want to present a model for isotropic plasticity, which is based on the previous

model but is formulated in eigenvalues. The important point is that once the trial-

eigenprojections are obtained they are constant during the entire iteration such that only

a reduced model in terms of the eigenvalues results. As elastic model we use a model

previously introduced (see Equation (4.14)) with a volumetric-isochoric split. At first

we want to give the relevant equations in absolute tensor notation :

Elastic potential :

ψe =
1

2
κ (lnJe)2 +

1

2
µ (Je−2/3 tr(gbe) − 3) (5.64)

with Je =
√

det(beg).

Kirchhoff-stress :

τττ = 2
∂ψe

∂g
= κ lnJe g−1 + µ Je−2/3

(

be − 1

3
tr(gbe) g−1

)

(5.65)

Stress deviator :

dev(τττ ) = µ Je−2/3

(

be − 1

3
tr(gbe) g−1

)

(5.66)

Yield function :

F =
√

tr((dev(gτττ))2) −
√

2

3
q(α)

= µ Je−2/3

√

tr(gbegbe) − 1

3
(tr(gbe))2 −

√

2

3
q(α) ≤ 0

(5.67)

Normal to the yield surface :

n =
∂F

∂(gτττ )
=

1
√

tr((dev(gτττ))2)
dev(τττg) =

beg − 1
3

tr(gbe) i
√

tr(gbegbe) − 1
3

(tr(gbe))2
(5.68)

Elastic stiffness matrix :

c′ = κ ((g−1 × g−1) − lnJe (g−1 ⊗ g−1 + g−1
2× g−1))

+
2

3
µ Je−2/3

(

−be × g−1 − g−1 × be +
1

3
Ibe g−1 × g−1

+
1

2
Ibe (g−1 ⊗ g−1 + g−1

2× g−1)

)

(5.69)
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Evolution equation for be :

be
(n+1) = exp(−∆γn)be

(trial)exp(−∆γn∗) (5.70)

Now we want to give the equations exploiting spectral decompositions of all tensors. As

a well-known fact the elastic left Cauchy-Green-tensor and the metric tensor related

to the current configuration can be decomposed in the form :

be =
3∑

i=1

λ2
i ni ⊗ ni, g−1 = g = i =

3∑

i=1

ni ⊗ ni (5.71)

From the evolution law for be from Equation (5.70) one obviously sees that under the

postulate of the uniqueness of the spectral decomposition, the eigenprojections of be are

invariant during the return-map:

ni (trial) ⊗ ni (trial) = ni (n+1) ⊗ ni (n+1) = ni (i) ⊗ ni (i) (no summation over i) (5.72)

with ni (trial) ⊗ ni (trial) as the trial-eigenprojection and ni (i) ⊗ ni (i) as the eigenprojection

during the return-map in iteration step i. Therefore only the eigenvalues of be are

variable. The tensors are given by :

Kirchhoff-stress tensor :

τττ =
3∑

i=1

(

κ lnJe + µ Je−2/3

(

λ2
i −

1

3
(λ2

1 + λ2
2 + λ2

3)

))

ni ⊗ ni (5.73)

with Je =
√

λ2
1λ

2
2λ

2
3.

The stress deviator :

dev(τττ) =

3∑

i=1

µ Je−2/3

(

λ2
i −

1

3
(λ2

1 + λ2
2 + λ2

3)

)

ni ⊗ ni (5.74)

The yield function :

F = µ Je−2/3

√

λ4
1 + λ4

2 + λ4
3 − 1

3
(λ2

1 + λ2
2 + λ2

3)
2 −

√
2
3
q(α)

= µ Je−2/3
√

2
3
(λ4

1 + λ4
2 + λ4

3 − λ2
1λ

2
2 − λ2

1λ
2
3 − λ2

2λ
2
3) −

√
2
3
q(α)

(5.75)

The normal to the yield surface :

n =

3∑

i=1

ni ni ⊗ ni =

3∑

i=1

λ2
i − 1

3
(λ2

1 + λ2
2 + λ2

3)
√

2
3
(λ4

1 + λ4
2 + λ4

3 − λ2
1λ

2
2 − λ2

1λ
2
3 − λ2

2λ
2
3)

ni ⊗ ni (5.76)
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The evolution law for the elastic left Cauchy-Green-tensor:

be
(n+1) = exp(−∆γ(n+1)n(n+1))b

e
(trial)exp(−∆γ(n+1)n

∗
(n+1))

3∑

i=1

λ2
i (n+1)ni ⊗ ni =

∑3
i=1 exp(−2∆γ(n+1)ni (n+1))λ

2
i (trial) ni ⊗ ni

(5.77)
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Chapter 6

Algorithmic setting

6.1 Introduction

The above problem is highly nonlinear by nature. Therefore to solve this problem we

have to employ a Newton-Raphson-procedure on Gauss-point level. There are two

unknowns in the coupled system: n(n+1) and ∆γ. To get a solution for these values

we have to consider certain auxiliary conditions from which these values can be derived.

Since the yield function F is a scalar equation it is used as auxiliary condition to derive

the consistency parameter. Normally F > 0 is not allowed. However, in the actual

computations it is possible that we have elastic behaviour and end up somewhere beyond

the elastic domain where F > 0. Since F ≤ 0 has to be fullfilled anyway we have to

project the stress tensor from beyond the yield condition exactly onto the yield condition,

so that F = 0 holds. As we can see from Equation (5.45) the direction of this projection

is the direction of the normal n(n+1) to the yield surface. The consistency parameter

measures the scalar length of the projection n(n+1) onto the yield surface. Therefore by

using F as auxiliary condition and by demanding F = 0 we can compute the consistency

parameter ∆γ. But we have to find also an auxiliary condition for the normal itself. To

compute the normal we just use the definition for the normal in residual form :

Rn = n(i) −
∂F(i)

∂(gτττ )(i)

= 0 (6.1)

which has to be fulfilled iteratively. Note that due to the nonlinear nature of the problem

n(n+1) is not equal to n(trial).
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6.1.1 Return-map in tensor notation

The physical nonlinear equation system will be solved using a Newton-method. As

residua we use on the one hand the yield criterion and the normal to the yield surface

n(n+1) :

1. The yield criterion :

F(i)(gτττ (i)(g,b
e
(i)(n̄(i),∆γ

i)), q(∆γi)) = 0

2. The conditional equation for the normal :

Rn (i) = n̄(i) −
1√· · ·

(

(gτττ)T
(i) −

1

3
tr(gτττ )(i) i

)

= 0

The zero values for both equations are obtained by a Newton-method :

h(i) + h,y ·∆y = 0 , (6.2)

with

h,y =








∂F(i)

∂∆γ

∂F(i)

∂n̄(i)

∂Rn (i)

∂∆γ

∂Rn (i)

∂n̄(i)








(6.3)

Afterwards the following quantities are updated :

∆y = −h−1
,y · h(i) , y(i+1) = y(i) + ∆y . (6.4)

The solution presupposes the construction of the following vector in terms of the basic

unknowns ∆γ and n(i) :

y =
(
∆γ, n̄(i)

1
. 1, n̄(i)

2
. 2, n̄(i)

3
. 3, n̄(i)

1
. 2, n̄(i)

1
. 3,

n̄(i)
2
. 3, n̄(i)

2
. 1, n̄(i)

3
. 1, n̄(i)

3
. 2

)
. (6.5)

h(i) =
(
F(i), Rn (i)

1
. 1, Rn (i)

2
. 2, Rn (i)

3
. 3, Rn (i)

1
. 2, Rn (i)

1
. 3,

Rn (i)
2
. 3, Rn (i)

2
. 1, Rn (i)

3
. 1, Rn (i)

3
. 2

)
(6.6)

where ∆γ = 0 and n̄(0) = n(trial) at the beginning. Since the component matrix of n(n+1)

is in general unsymmetric we have to use 9 components. The single equations to be used
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in Equation (6.3) read as :

∂F(i)

∂n̄(i)

=
∂F(i)

∂(gτττ )(i)

:
∂(gτττ )(i)

∂be
(i)

:
∂be

(i)

∂n̄(i)

∂F(i)

∂∆γ
=

∂F(i)

∂(gτττ )(i)

:
∂(gτττ )(i)

∂be
(i)

:
∂be

(i)

∂∆γ
+
∂F(i)

∂q(i)

∂q(i)
∂α(i)

∂α(i)

∂∆γ

∂Rn (i)

∂n̄(i)

= i ⊗ i +
∂Rn (i)

∂(gτττ )(i)

:
∂(gτττ )(i)

∂be
(i)

:
∂be

(i)

∂n̄(i)

∂Rn (i)

∂∆γ
=

∂Rn (i)

∂(gτττ )(i)
:
∂(gτττ )(i)

∂be
(i)

:
∂be

(i)

∂∆γ
.

(6.7)

One advantage of such a description is, that the basis gi stays fixed during the return-map.

Therefore no component transformations are necessary during the return-map:

∂F(i)

∂(gτττ )(i)
= n(n+1)

∂Rn (i)

∂(gτττ )(i)

= − 1√
···

(
i 2× i − 1

3
i × i − n(i) × n(i)

)

∂be
(i)

∂n̄(i)
= −∆γ

[

exp(−∆γn̄(i)),(−∆γn̄(i)) b
e
(trial) exp(−∆γn̄∗

(i))

+ exp(−∆γn̄(i))b
e
(trial) exp(−∆γn̄∗

(i)),(−∆γn̄(i))

]

∂be
(i)

∂∆γ
= − exp(−∆γn̄(i))

[

n̄(i)b
e
(trial) + be

(trial)n̄
∗
(i)

]

exp(−∆γn̄∗
(i))

∂F(i)

∂q(i)

∂q(i)
∂α(i)

∂α(i)

∂∆γ
= −δ 2

3
(σY ∞ − σY 0) e

(−δ α(i)) − 2

3
H law 1:

∂F(i)

∂q(i)

∂q(i)
∂α(i)

∂α(i)

∂∆γ
= −2

3
a1 a3

(
a2 + α(i)

)a3−1
law 2:

(6.8)

if we consider in extension of rule Equation (5.35) the following isotropic hardening laws:

q(α) = σY0 + (σ∞ − σY0)(1 − exp(−δ α)) +H α law 1:

q(α) = a1 (a2 + α)a3 law 2:

(6.9)

The iteration is done until the residua F(i) = 0 and Rn (i) = 0 are fulfilled up to a certain

tolerance limit which is usually set to 10−12. The end values of the Newton-procedure
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are set to ∆γ and n(n+1) with which the stresses as output values can be computed. As

further output values for the global solution we also need the stiffness matrix that means

the consistent elasto-plastic tangent operator Cep . This will be discussed in a forthcoming

section.

6.2 Computation of eigenvalues and eigenprojections

As starting point of the algorithm in principal axes we have to compute the eigenvalues

and eigenprojections of be.

Note that only two tensors are used in the elastic law: be and g. Both tensors are

symmetric and therefore have a certain decomposition with real principal values. Since g

is an identity tensor in the related spectral decomposition its eigenvalues are 1.

be = Ĝijgi ⊗ gj = λ2
i ni ⊗ ni = λ2

i mi ,

g = gijgi ⊗ gj = δij ni ⊗ nj =
3∑

i=1

mi ,
(6.10)

where mi are the eigenprojections and gi ⊗ gj is the tensor basis. In subsequent compu-

tations we use the eigenprojections instead of the tensor basis. For the problem we have

to compute the eigenvalues of the tensor be. At first note that the components of be have

been resolved with respect to the basis gi which is deformation dependent. To compute

the eigenvalues of be we have at first to resolve be with respect to a basis ii fixed in space.

Using the shell kinematics the basis gi is defined by :

gi =
0
x,θi +θ3(λ,θid + λd,θi) , for i= 1,2 ,

g3 = λd ,

(6.11)

and similarly for the reference configuration:

Gi =
0

X,θi +θ3(D,θi), for i= 1,2 ,

G3 = D .

(6.12)

Then the components of be with respect to the basis ii can be computed by

be
ij = (ii · be) · ij = (ii · (Ĝklgk ⊗ gl)) · ij = Ĝkl(gk · ii)(gl · ij) . (6.13)

As previously mentioned we use an enhanced assumed strain formulation as el-

ement stabilization. The incompatible modes are added to the strains that means the
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tensor components ḡij contain both compatible and incompatible modes. However, the

basis gi is solely computed from the kinematical values, and the shell kinematics does

depend only on compatible deformations. That means the basis gi obtainable from the

displacement field is not the real basis we wish to have. Therefore we have to compute

the real basis which we call ḡi. To compute this basis we start from the definition for

the deformation gradient F = RU which is explained in the Section 4.4.2. At first we

compute the components of the deformation gradient in the reference basis (see Section

2.6.2):

F = gi ⊗ Gi = F i
. j Gi ⊗ Gi ⇒ F i

. j = (Gi · (gk ⊗ Gk)) · Gj = δk
. j(G

i · gk) = Gi · gj .

(6.14)

Next we compute the metric tensor components gij solely from the displacement field by

disregarding the incompatible modes. From this we compute the right stretch tensor U

which delivers the rotation tensor R = FU−1 ( Note that we use the decompositions

R = Ri
. j Gi ⊗ Gj and U = U i

. j Gi ⊗ Gj). Afterwards we do the same for the real

metric tensor ḡij which includes both compatible and incompatible stretches, from which

we derive the stretch tensor Ū. Then we compute the real deformation gradient:

F̄ = RŪ = F̄ i
. j Gi ⊗ Gj (6.15)

Then we obtain the real basis ḡi using the above deformation gradient:

ḡi = F̄Gi = (F̄ k
. l Gk ⊗ Gl) · Gi = F̄ k

. l (G
l · Gi)Gk = F̄ k

. i Gk . (6.16)

Thus the components of be with respect to the “real” basis are given by

be = Ĝij ḡi ⊗ ḡj ⇒ be
ij = Ĝkl (ḡk · ii)(ḡl · ij) (6.17)

6.3 Return-map in principal axes

In case of an implicit rule the normal and the plastic consistency parameter are implicitly

determined. The following dependencies exist :

ni (i) = ni (i)

(

λ2
i (i)

(

∆γ(i), λ
2
i (trial), n̄i (i)

))

F(i) = F(i)

(

λ2
i (i)

(

∆γ(i), λ
2
i (trial), n̄i (i)

)

, q(i)(α(i)(∆γ(i)))
)

(6.18)

Therefore we obtain 4 equations to determine the unknowns ni (n+1) and ∆γ(n+1). To

compute these values we employ a Newton-procedure :

h(i) + h,y ·∆y = 0 (6.19)



56 Chapter 6: Algorithmic setting

with

h,y =








∂F(i)

∂∆γ(i)

∂F(i)

∂n̄i (i)

∂Rk (i)

∂∆γ(i)

∂Rk (i)

∂n̄i (i)








(6.20)

the residuals

Rk (i) = n̄k (i) −
λ2

k (i) − 1
3
(λ2

1 (i) + λ2
2 (i) + λ2

3 (i))
√

2
3
(λ4

1 (i) + λ4
2 (i) + λ4

3 (i) − λ2
1 (i)λ

2
2 (i) − λ2

1 (i)λ
2
3 (i) − λ2

2 (i)λ
2
3 (i))

= 0 (6.21)

and the start vector

y(0) = {0, n̄1 (trial), n̄2 (trial), n̄3 (trial)} , h(i) = {F(i),R1 (i),R2 (i),R3 (i)} (6.22)

Note that n̄k (i) denotes the iterated value of the normal while nk (i) are the exact compo-

nents obtained by means of the implicit law Equation (5.76). The linearization finally

delivers :

∆y = −h−1
,y · h(i) , y(i+1) = y(i) + ∆y (6.23)

The tensors appearing above are determined by :

∂F(i)

∂∆γ(i)

=
∂F(i)

∂λ2
i (i)

∂λ2
i (i)

∂∆γ(i)

+
∂F(i)

∂q(i)

∂q(i)
∂α(i)

∂α(i)

∂∆γ(i)

∂F(i)

∂n̄i (i)

=
∂F(i)

∂λ2
m (i)

∂λ2
m (i)

∂n̄i (i)

∂Rk (i)

∂∆γ(i)

= − ∂nk (i)

∂λ2
m (i)

∂λ2
m (i)

∂∆γ(i)

∂Rk (i)

∂n̄i (i)

= δki −
∂nk (i)

∂λ2
m (i)

∂λ2
m (i)

∂n̄i (i)

(6.24)

with

∂F(i)

∂λ2
i (i)

= µ Je−2/3







(

λ2
i (i) − 1

3
(λ2

1 (i) + λ2
2 (i) + λ2

3 (i))(δ1i + δ2i + δ3i)
)

√

2
3

(

λ4
1 (i) + λ4

2 (i) + λ4
3 (i) − λ2

1 (i)λ
2
2 (i) − λ2

1 (i)λ
2
3 (i) − λ2

2 (i)λ
2
3 (i)

)

−1

3

√

2
3

(

λ4
1 (i) + λ4

2 (i) + λ4
3 (i) − λ2

1 (i)λ
2
2 (i) − λ2

1 (i)λ
2
3 (i) − λ2

2 (i)λ
2
3 (i)

)

λ2
i (i)







(6.25)
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since

∂
(

λ2
1 (i)λ

2
2 (i)λ

2
3 (i)

)

∂λ2
i (i)

=
(
δ1iλ

2
2 (i)λ

2
3 (i) + δ2iλ

2
1 (i)λ

2
3 (i) + δ3iλ

2
1 (i)λ

2
2 (i)

)

=

(

λ2
1 (i)λ

2
2 (i)λ

2
3 (i)

(

δ1i

λ2
1 (i)

+
δ2i

λ2
2 (i)

+
δ3i

λ2
3 (i)

))

= Je 2

(

1

λ2
i (i)

)

(6.26)
∂λ2

i (i)

∂∆γ(i)
= −2 n̄i (i)exp(−2∆γ(i)n̄i (i))λ

2
i (trial) (6.27)

If these two tensors are contracted, a summation over the (i)-indices has to be carried

out. Further tensors are :

∂λ2
i (i)

∂n̄k (i)

= (−2∆γ(i)δik)exp(−2∆γ(i)n̄i (i))λ
2
i (trial) (6.28)

∂nk (i)

∂λ2
i (i)

=
δik − 1

3
(δ1k + δ2k + δ3k)

√

2
3

(

λ4
1 (i) + λ4

2 (i) + λ4
3 (i) − λ2

1 (i)λ
2
2 (i) − λ2

1 (i)λ
2
3 (i) − λ2

2 (i)λ
2
3 (i)

)

−

(

λ2
i (i) − 1

3
(λ2

1 (i) + λ2
2 (i) + λ2

3 (i))
)(

λ2
k (i) − 1

3
(λ2

1 (i) + λ2
2 (i) + λ2

3 (i))(δ1k + δ2k + δ3k)
)

(
2
3

(

λ4
1 (i) + λ4

2 (i) + λ4
3 (i) − λ2

1 (i)λ
2
2 (i) − λ2

1 (i)λ
2
3 (i) − λ2

2 (i)λ
2
3 (i)

))3/2

=
δik − 1

3
− ni (i)nk (i)

√

2
3

(

λ4
1 (i) + λ4

2 (i) + λ4
3 (i) − λ2

1 (i)λ
2
2 (i) − λ2

1 (i)λ
2
3 (i) − λ2

2 (i)λ
2
3 (i)

)

(6.29)

where we may set :

(δ1k + δ2k + δ3k) = 1 (6.30)

The local iteration is carried out until an error treshold is reached e.g. 10−12.

6.4 The elasto-plastic tangent operator

6.4.1 Formulation in tensor notation

The inner virtual work reads as :

δW int =

∫
∂ψe

∂Ē
: δĒ dV =

∫

2
∂ψe

∂C̄
:

1

2
δC̄ dV =

∫

S(n+1) :
1

2
δC̄ dV (6.31)
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If we now use quantities with respect to the current configuration, we have to use a

so-called Lie-variation of ḡ (δbḡ = F�(δ(F�(ḡ)))) :

δW int =

∫

τττ (n+1) :
1

2
δbḡ dV =

∫
1

2
δbḡ q aτττ (n+1)dV (6.32)

The first variation of δW int linearized around the value δW int = 0 reads as:

∆δW int =

∫
1

2
∆bδbḡ q aτττ (n+1) dV +

∫
1

2
δbḡ q a2

∂τττ (n+1)

∂g
q a

1

2
∆bḡ dV (6.33)

where we use the following dependency

τττ (n+1) = τττ (n+1)(g,b
e
(n+1)(n(n+1),∆γ)) (6.34)

resulting in :

∂τττ (n+1)

∂g
=

∂τττ (n+1)

∂g
|be

(n+1)
=const. +

∂τττ (n+1)

∂be
(n+1)

q a

∂be
(n+1)

∂n(n+1)

q a

∂n(n+1)

∂g

+
∂τττ (n+1)

∂be
(n+1)

q a

(
∂be

(n+1)

∂∆γ
× ∂∆γ

∂g

) (6.35)

Note that we have simply written g instead of the correct notation ḡ = g + g̃. This will

also be done in what follows. With the abbreviation :

E =

(

i ⊗ i +
∂Rn (n+1)

∂(gτττ )(n+1)

q a

∂(gτττ)(n+1)

∂be
(n+1)

q a

be
(n+1)

∂n(n+1)

)

(6.36)

we obtain for the differentiation of the normal with respect to g :

∂n(n+1)

∂g
= (−E

−1) q a

[
∂Rn (n+1)

∂(gτττ )(n+1)

q a

∂(gτττ )(n+1)

∂g

+
∂Rn (n+1)

∂(gτττ )(n+1)

q a

∂(gτττ )(n+1)

∂be
(n+1)

q a

(
be

(n+1)

∂∆γ
× ∂∆γ

∂g

)] (6.37)

If we now introduce this term in the consistency condition (Ḟ = 0):

∂F(n+1)

∂(gτττ )(n+1)

q a

∂(gτττ )(n+1)

∂g
+

∂F(n+1)

∂(gτττ )(n+1)

q a

∂(gτττ )(n+1)

∂be
(n+1)

q a

(
be

(n+1)

∂∆γ
× ∂∆γ

∂g

)

+
∂F(n+1)

∂(gτττ )(n+1)

q a

∂(gτττ )(n+1)

∂be
(n+1)

q a

be
(n+1)

∂n(n+1)

q a

∂n(n+1)

∂g
+
∂F(n+1)

∂q(n+1)

∂q(n+1)

∂α(n+1)

∂α(n+1)

∂∆γ

∂∆γ

∂g
= 0

(6.38)
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we finally get the derivative of the consistency parameter:

∂∆γ

∂g
= −

[(

∂F(n+1)

∂(gτττ )(n+1)

q a

∂(gτττ )(n+1)

∂be
(n+1)

q a

be
(n+1)

∂n(n+1)

)

q a(−E
−1) q a

(

∂Rn (n+1)

∂(gτττ )(n+1)

q a

∂(gτττ )(n+1)

∂be
(n+1)

q a

be
(n+1)

∂∆γ

)

+
∂F(n+1)

∂q(n+1)

∂q(n+1)

∂α(n+1)

∂α(n+1)

∂∆γ
+

∂F(n+1)

∂(gτττ )(n+1)

q a

∂(gτττ )(n+1)

∂be
(n+1)

q a

be
(n+1)

∂∆γ

]−1

[(

∂F(n+1)

∂(gτττ )(n+1)

q a

∂(gτττ )(n+1)

∂be
(n+1)

q a

be
(n+1)

∂n(n+1)

)

q a(−E
−1) q a

(
∂Rn (n+1)

∂(gτττ )(n+1)

q a

∂(gτττ)(n+1)

∂g

)

+
∂F(n+1)

∂(gτττ )(n+1)

q a

∂(gτττ )(n+1)

∂g

]

(6.39)

This result included in Equation (6.37) and afterwards in Equation (6.35) allows the

determination of the elasto-plastic tangent operator. Note that these equations are imple-

mented in direct form. If all tensors Equation (6.7) are known as well as the constitutive

laws, this offers now particular problems. In this way we have the possibility to consider

arbitrary constitutive, in this case isotropic, material laws.

6.4.2 Formulation in principal axes

To derive the elasto-plastic tangent operator in eigenvalues it is suitable to start from the

corresponding representation in absolute tensor notation and to express these equations in

eigenvalues. Since the solution in absolute tensor notation is known, this transformation

is simple. In absolute tensor notation the following residuals exist :

n(n+1)(g) − n(n+1)(g,b
e
(n+1)(∆γ(g),n(n+1)(g))) = 0

F(n+1)(g,b
e
(n+1)(∆γ(g),n(n+1)(g)), q(n+1)(α(n+1)(∆γ(n+1)(g)))) = 0

(6.40)

Conclusively, we obtain :

ni (n+1)(g) − ni (n+1)

(

g, λ2
i (n+1)(∆γ(n+1)(g), n(n+1)(g)

)

= 0

F(n+1)

(

g, λ2
i (n+1)

(
∆γ(n+1)(g), n(n+1)(g))

)
, q(n+1)(α(n+1)(∆γ(n+1)(g)))

)

= 0

(6.41)

The differentiation with respect to g leads to the following results :

ni (n+1)

∂g
− ∂ni (n+1)

∂g
− ∂ni (n+1)

∂λ2
m (n+1)

∂λ2
m (n+1)

∂∆γ(n+1)

∂∆γ(n+1)

∂g
− ∂ni (n+1)

∂λ2
m (n+1)

∂λ2
m (n+1)

∂nk (n+1)

∂nk (n+1)

∂g
= 0

(6.42)
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It finally follows :

∂nk (n+1)

∂g
=

(

δik −
∂ni (n+1)

∂λ2
m (n+1)

∂λ2
m (n+1)

∂nk (n+1)

)−1(

∂ni (n+1)

∂g
+

∂ni (n+1)

∂λ2
m (n+1)

∂λ2
m (n+1)

∂∆γ

∂∆γ

∂g

)

(6.43)

For this expression we need the derivative
∂ni (n+1)

∂g
, which will be derived, at first, in

absolute tensor notation and will then be expressed in eigenvalues.

∂n(n+1)

∂g
=

1
2
(be ⊗ i + be

2× i) − 1
3
i × be

√

tr(gbegbe) − 1
3
(tr(gbe))2

−
(
beg − 1

3
tr(gbe) i

)
×
(
begbe − 1

3
tr(gbe) be

)

(
tr(gbegbe) − 1

3
(tr(gbe))2)3/2

=

(
1
2
λ2

o (n+1) (mo ⊗ mi + mo 2× mi) − 1
3
mo × λ2

i (n+1) mi − no mo × λ2
i (n+1)ni mi

)

√
2
3
(λ4

1 + λ4
2 + λ4

3 − λ2
1λ

2
2 − λ2

1λ
2
3 − λ2

2λ
2
3)(n+1)

(6.44)

where for a term mo or mi without prefactor with the same index the summation in the

form mo = m1 + m2 + m3 has to be carried out. This rule has also to be followed in all

relations which are given latter.

The contraction from the left-hand side with go ⊗ gp, i.e. (go ⊗ gp) q a(
∂n

∂g
) gives

∂no
. p

∂g
. Finally, if we transform this into eigenvalues, we obtain :

∂nk (n+1)

∂g
=

(

λ2
k (n+1)mk − λ2

i (n+1)(
1
3

+ nk ni) mi

)

√
2
3
(λ4

1 + λ4
2 + λ4

3 − λ2
1λ

2
2 − λ2

1λ
2
3 − λ2

2λ
2
3)(n+1)

(no summation over k, but over i !)

(6.45)

The derivative of the yield function is given by :

∂F(n+1)

∂g
+
∂F(n+1)

∂λ2
i (n+1)

∂λ2
i (n+1)

∂nk (n+1)

∂nk (n+1)

∂g
+
∂F(n+1)

∂λ2
i (n+1)

∂λ2
i (n+1)

∂∆γ(n+1)

∂∆γ(n+1)

∂g

+
∂F(n+1)

∂q(n+1)

∂q(n+1)

∂α(n+1)

∂α(n+1)

∂∆γ(n+1)

∂∆γ(n+1)

∂g
= 0

(6.46)
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Using Equation (6.43) finally delivers :

∂∆γ(n+1)

∂g
= −

[

∂F(n+1)

∂λ2
i (n+1)

∂λ2
i (n+1)

∂∆γ(n+1)

+
∂F(n+1)

∂q(n+1)

∂q(n+1)

∂α(n+1)

∂α(n+1)

∂∆γ(n+1)

+
∂F(n+1)

∂λ2
i (n+1)

∂λ2
i (n+1)

∂nk (n+1)

(

δlk −
∂nl (n+1)

∂λ2
n (n+1)

∂λ2
n (n+1)

∂nk (n+1)

)−1
∂nl (n+1)

∂λ2
m (n+1)

∂λ2
m (n+1)

∂∆γ(n+1)





−1




∂F(n+1)

∂λ2
i (n+1)

∂λ2
i (n+1)

∂nk (n+1)

(

δlk −
∂nl (n+1)

∂λ2
n (n+1)

∂λ2
n (n+1)

∂nk (n+1)

)−1
∂nl (n+1)

∂g
+
∂F(n+1)

∂g





(6.47)

with

∂F(n+1)

∂g
= µ Je−2/3




(begbe − 1

3
tr(gbe)be)

√
(
tr(gbegbe) − 1

3
(tr(gbe))2

) −
1

3

√
(

tr(gbegbe) − 1

3
(tr(gbe))2

)

g−1





=
3∑

i=1

µ Je−2/3




λ4

i (n+1) − 1
3
(λ2

1 + λ2
2 + λ2

3)
(n+1)λ2

i (n+1)
√

2
3
(λ4

1 + λ4
2 + λ4

3 − λ2
1λ

2
2 − λ2

1λ
2
3 − λ2

2λ
2
3)(n+1)

− 1

3

√

2

3
(λ4

1 + λ4
2 + λ4

3 − λ2
1λ

2
2 − λ2

1λ
2
3 − λ2

2λ
2
3)(n+1)

)

mi

(6.48)

Now the elasto-plastic tangent operator will be derived. The dependency is :

τττ (n+1)(g,b
e
(n+1)(∆γ(n+1)(g),n(n+1)(g))) (6.49)

Since the eigenprojection is invariant :

τττ (n+1)(g, λ
2
i (n+1)(∆γ(n+1)(g), nm (n+1)(g))) (6.50)

∂τττ (n+1)

∂g
=
∂τττ (n+1)

∂g
|(∆γ,nm)=const. +

∂τττ (n+1)

∂λ2
i (n+1)

∂λ2
i (n+1)

∂∆γ(n+1)
× ∂∆γ(n+1)

∂g

+
∂τττ (n+1)

∂λ2
i (n+1)

∂λ2
i (n+1)

∂nk (n+1)

× ∂nk (n+1)

∂g

(6.51)

It has to be noted that the computation of the elasto-plastic tangent operator in the

above way is not fully correct. Like it can be seen, the underlined terms are reduced to

a tensor product of the form (×). Thereby the exact solution for the real fourth-order

tensor is somehow constrained which is not correct. If we compare Equation (6.50) with
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Equation (6.35) we see that this conclusion does not hold for the term involving ∆γ,g

. However, the underlined term has to be computed alternatively. The following fourth-

order tensor has to be transformed into eigenvalues (see Equations (6.35), (6.36) and

(6.37)) :

∂τττ (n+1)

∂be
q a

∂be

∂n
q a

(

I − ∂n

∂be

∂be

∂n̄

)−1

q a

(
∂n

∂g
+
∂n

∂be
q a(
∂be

∂∆γ
× ∂∆γ

∂g
)

)

(6.52)

However, also in this case we can employ a simplification. Instead of inserting a 9 × 9-

matrix in the above middle term, only the inversion of a 3×3- and of three 2×2-matrices

is necessary. This yields to :

(

I − ∂n

∂be

∂be

∂n̄

)

=









































1 0 0

0 1 0

0 0 1










− A1 0 0 0

0






1 0

0 1




−A2 0 0

0 0






1 0

0 1




−A3 0

0 0 0






1 0

0 1




−A4
































(6.53)

with

A1 =

























Exp2
1 λ1 ∆γ

(−4/3 + 2 n2
1)√· · ·

Exp2
2 λ2 ∆γ

(2/3 + 2 n12)√· · ·

Exp2
3 λ3 ∆γ

(2/3 + 2 n13)√· · ·
Exp2

1 λ1 ∆γ

(2/3 + 2 n12)√· · ·

Exp2
2 λ2 ∆γ

(−4/3 + 2 n2
2)√· · ·

Exp2
3 λ3 ∆γ

(2/3 + 2 n23)√· · ·
Exp2

1 λ1 ∆γ

(2/3 + 2 n13)√· · ·

Exp2
2 λ2 ∆γ

(2/3 + 2 n23)√· · ·

Exp2
3 λ3 ∆γ

(−4/3 + 2 n2
3)√· · ·

























(6.54)
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and

A2 = n12






Exp2 λ2 Exp1 λ1

Exp2 λ2 Exp1 λ1




 A3 = n23






Exp3 λ3 Exp2 λ2

Exp3 λ3 Exp2 λ2




 (6.55)

A4 = n13






Exp3 λ3 Exp1 λ1

Exp3 λ3 Exp1 λ1




 (6.56)

The order of components of the second-order tensor in the above matrix is defined by :

(

11 22 33 12 21 23 32 13 31

)

(6.57)

We will use the following abbreviations (with na = na (n+1)) :

Expa = exp(−∆γ na) Exp2
a = exp(−2 ∆γ na) λa = λ2

a (trial)

nab = nba = na nb n2
a = na na nab = nba =

∞∑

k=1

k−1∑

r=0

(−∆γ)k

k!
nr

b n
k−r−1
a

(6.58)

A further important quantity is obtained form the differentiation of relation Equation

(5.73) in the form :

∂τττ (n+1)

∂λ2
k (n+1)

=
(
µ Je−2/3

)
mk+



−1

3
µ Je−2/3 +

(
1
2
κ− 1

3
µ Je−2/3

(
λ2

i − 1
3
(λ2

1 + λ2
2 + λ2

3)
)

(n+1)

)

λ2
k (n+1)



mi

(6.59)

∂τττ (n+1)

∂be
=

1

2
κmo ×

1

λ2
i (n+1)

mi + µ Je−2/3

(

−1

3
λ2

o (n+1) mo ×
1

λ
2 (n+1)
i

mi −
1

3
mo ×mi

+
1

9
(λ2

1 + λ2
2 + λ2

3)(n+1) mo ×
1

λ2
i (n+1)

mi +
1

2
(mo ⊗mi + mo 2× mi)

)

(6.60)

and
∂n

∂be
=

(
1
2
(mo ⊗mi + mo 2× mi) − 1

3
mo × mi − no mo × ni mi

)

√
2
3
(λ4

1 + λ4
2 + λ4

3 − λ2
1λ

2
2 − λ2

1λ
2
3 − λ2

2λ
2
3)(n+1)

(6.61)

as well as
∂be

∂∆γ
= −2ni λ

2
i (trial) exp(−2∆γni) (6.62)
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The derivative of be with respect to n can be decisively simplified, by using the matrices

(Ai (i = 2, 3, 4)) as before :

∂be

∂n
=





















(−2 ∆γ)










Exp2
1 λ1 0 0

0 Exp2
2 λ2 0

0 0 Exp2
3 λ3










0 0 0

0 A2 0 0

0 0 A3 0

0 0 0 A4





















(6.63)

with the above given order Equation (6.57) for the components of a second-order tensor.

Finally we sort the above terms into the corresponding positions of a 4-order tensor. To

compute the elasto-plastic tangent, now only the elastic part is missing, which can be

obtained as follows (see Equation (5.69)):

∂τττ (n+1)

∂g
|(···)=const.=

(

κ+
2

3
µ Je−2/3

(

−λ2
i (n+1) − λ2

k (n+1) +
1

3
(λ2

1 + λ2
2 + λ2

3)(n+1)

))

mi ×mk

+

(

−κ lnJe +
1

3
µ Je−2/3 (λ2

1 + λ2
2 + λ2

3)(n+1)

)

(mi ⊗ mk + mi 2× mk)

(6.64)

In all equations the determinant Je =
√

λ2
1λ

2
2λ

2
3 is evaluated at the specific point, here at

the end of the iteration (n + 1).
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Numerical examples

7.1 Simple shear test

x 1

x 2

E  =  2 0 0
n  =  0 . 3
H  =  2 . 0
h   =  0 . 0 1
s    =  0 . 7 5

1

1

M a t e r i a l  d a t a :g

Y 0

Figure 7.1: Simple shear of a rectangular sheet (plane strain analysis)

As first example simple shear of a rectangular sheet assuming plane strain con-

ditions is considered. Figure (7.1) contains the geometry and material parameters. In

Figure (7.2)-(7.5) the Cauchy-stresses σ<11> and σ<12> are plotted versus the shear

strain γ for different models, which are tensor model and model in principal axes . For

these implicit models smooth results are obtained from the model algorithm formulated

in the tensor notation and in the principal axes notation (eigenvalues notation) . The re-

sults for the different models are in good agreement with each other. In case of isotropic

hardening the elasto-plastic tangent operator possesses major and minor symmetry.
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Figure 7.2: Simple shear of a rectangular sheet (isotropic hardening) Cauchy-stress

versus shear strain of tensor model

- 2 0

- 1 5

- 1 0

- 5

0
0 1 2 3 4 5 6 7 8 9 1 0

no
rm

al 
str
ess

  s
<1

1>

s h e a r  s t r a i n   g

m o d e l  i n  p r i n c i p a l  a x e s. . . . . . . . . . . . . .

Figure 7.3: Simple shear of a rectangular sheet (isotropic hardening) Cauchy-stress

versus shear strain of model in principal axes

The Cauchy-stresses versus shear strain results are compared between the tensor

model and model in principal axes, in Table 7.1.
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Figure 7.4: Simple shear of a rectangular sheet (isotropic hardening) Cauchy-stress

versus shear strain of tensor model
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Figure 7.5: Simple shear of a rectangular sheet (isotropic hardening) Cauchy-stress

versus shear strain of model in principal axes

7.2 Tension test

As next example we consider a single element under uniaxial tension. Figure (7.6)

contains the geometry and material parameters. In Figures (7.7) and (7.8) the Cauchy-

stress σ<22> is plotted versus displacements [U], which are prescribed at the top, for both

models. For these two models the results are very identical to each other.

The Cauchy-stress σ<22> versus dispalcements [U] results are compared between
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Table 7.1: Comparison between the tensor model and model in principal axes for the

simple shear test

Shear strain γ Tensor model Model in pricipal axes

Normal stress σ<11> .10006 × 102 −0.20511 × 102 −0.20511 × 102

Shear stress σ<12> 0.56291 × 10−2 0.4331 0.4331

.10006 × 102 0.13681 × 102 0.13681 × 102

x 1

x 2

E  =  2 0 8 0 0 0
n  =  0 . 3
H  =  2 8 5 0
h   =  0 . 0 1
s     =  3 0 0

D u

1

1

M a t e r i a l  d a t a :

Y 0

Figure 7.6: Tension of a rectangular sheet

the tensor model and model in principal axes, in Table 7.2.

7.3 Perforated strip under uniaxial extension

A thin perforated strip under uniaxial extension is considered in this example. This ex-

ample serves as a good test benchmark to test the proper working of the EAS-concept,

since without EAS we would obtain no decline in F after the maximum has been reached.

Due to symmetry of the structure only one quarter has been discretized (for details con-

cerning the geometry, material parameters and discretization using 60 enhanced-strain

4-noded elements see Figure (7.9)). The computation has been carried out by prescrib-

ing displacements ∆u at the right-hand side of the structure. The reaction force F at the

left-hand side has been recorded. As can be observed in the load-displacement diagrams

Figure (7.10) and (7.11) for both models the results are identical.



7.3 Perforated strip under uniaxial extension 69

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5

she
ar 

str
ess

  s
<2

2>

d i s p l a c e m e n t s    [ U ]

t e n s o r  m o d e l

Figure 7.7: Cauchy-stress versus displacements of tensor model
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Figure 7.8: Cauchy-stress versus displacements of model in principal axes

The force F versus dispalcements ∆u results are compared between the tensor

model and model in principal axes, in Table 7.3.
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Table 7.2: Comparison between the tensor model and model in principal axes of tension

test

Displacements [U] Tensor model Model in pricipal axes

Shear stress σ<22> .14421 × 10−2 0.29974 × 103 0.29974 × 103

.40044 0.12397 × 104 0.12397 × 104

1

x 1

Rx 2

L D u

W

G e o m e t r y :
L  =  1 8
W  =  1 0
R  =  5
h  =  1 . 0

M a t e r i a l  d a t a :
E  =  7 0
n  =  0 . 2

H  =  0 . 2
s    =  0 . 2 4 3

Fo
rce

  -F

Y 0

Figure 7.9: Perforated strip under uniaxial extension geometry and finite element mesh
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Figure 7.10: Load-displacement curve of tensor model (isotropic hardening)
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Figure 7.11: Load-displacement curve of model in principal axes (isotropic hardening)

Table 7.3: Comparison between the tensor model and model in principal axes of perfo-

rated strip under uniaxial extension

Displacements ∆u Tensor model Model in pricipal axes

Force F 0.135 −0.12380 × 101 −0.12380 × 101

1.0 −0.10413 × 101 −0.10413 × 101

2.0 −0.75255 −0.75255

3.0 −0.57308 −0.57308
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Figure 7.12: Equivalent plastic strain alpha α of perforated strip (isotropic hardening)

of tensor model
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Figure 7.13: Equivalent plastic strain alpha α of perforated strip (isotropic hardening)

of model in principal axes
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Chapter 8

Conclusions

The main aim of this work is to compare the isotropic plastic model formulated in eigen-

vales and in tensor formulation.

Form this study the following conclusions are drawn.

• The dimensionality of the isotropic plastic model in eigenvalues is reduced from 10

to 4.

• We could have reduced the tensor related problem also to a 7-dimensional problem

by considering a normal F,begτττ instead of F,gτττ in the residual, since the components

of begτττ are for isotropic hyperelasticity always symmetric.

• The eigenprojections of be are invariant during the Return map. This leads to a the

4-dimensional problem, where the consistency parameter and the three eigenvalues

of the normal to the yield surface are independent variables.

• The model relies on the isotropy of hyperelastic law, be as driving variable, the

coaxiality of the Kirchoff-stress measure τττ and be, the usual von Mises-J2-yield

function and the evolution of be by means of an exponential map.

• The results obtained in the numerical examples for the model formulated in tensor

notation and the model formulated in the principal axes are identical.

• Return Map in eigenvalues is similar to the Return Map in tensor formulation with

the exception that we now can simplify a lot which saves computational cost.

• The elasto-pastic tangent operator is used in computations of the global solutions.
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Chapter 9

Appendix

9.1 Computation of the eigenprojections

Before the Return Map, the eigenvalues and eigenprojections have to be computed (we

set λ̄ = λ2 for the eigenvalues of be). To treat multiple eigenvalues we can exploit the

essential fact that all eigenprojections are invariant during the Return Map. This allows

the implementation of just one unified algorithm for three eigenvalues by considering the

special cases by means of certain prefactors which are used in the computation of the final

value of be after the Return Map is accomplished.
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• Treatment of equal eigenvalues is done as follows:

Let ∆λ̄1 = (λ̄1 − λ̄2), ∆λ̄2 = (λ̄2 − λ̄3) and ∆λ̄3 = (λ̄1 − λ̄3) where the λ̄i are the

eigenvalues of the be. If three eigenvalues are equal then icase=3, if two eigenvalues

are equal then icase=2 and if all three eigenvalues are different then icase=1. Here

Tol = 1.0 e−12. The algorithm is given as follows:

If (∆λ̄1 < Tol) and (∆λ̄2 < Tol) then

icase = 3

elseif (∆λ̄3 < Tol) then

icase = 2

λ̄ = λ̄1

λ̄1 = λ̄2

λ̄2 = λ̄

elseif (∆λ̄1 < Tol) then

icase = 2

λ̄1 = λ̄3

λ̄3 = λ̄2

elseif (∆λ̄2 < Tol) then

icase = 2

else

icase = 1

endif
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• Computation of eigenprojections (mi). The algorithm is given as follows:

if (icase = 1) then

m1 =
(be)2 − (λ̄2 + λ̄3)b

e + λ̄2λ̄3i

(λ̄1 − λ̄3)(λ̄1 − λ̄2)

m2 =
(be)2 − (λ̄1 + λ̄3)b

e + λ̄1λ̄3i

(λ̄2 − λ̄3)(λ̄2 − λ̄1)

m3 =
(be)2 − (λ̄1 + λ̄2)b

e + λ̄1λ̄2i

(λ̄3 − λ̄1)(λ̄3 − λ̄2)

elseif (icase = 2) then

m1 =
be − λ̄2 i

λ̄1 − λ̄2

m2 =
be − λ̄1 i

λ̄2 − λ̄1

m3 = m2

elseif (icase = 3) then

m1 = i

m2 = m1

m3 = m1

endif
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• Computation of be after accomplishment of the Return Map. The algorithm is given

as follows:

if (icase = 3) then

fakt(1) =
1

3

fakt(2) =
1

3

fakt(3) =
1

3

elseif (icase = 2) then

fakt(1) = 1

fakt(2) =
1

2

fakt(3) =
1

2

else

fakt(1) = 1

fakt(2) = 1

fakt(3) = 1

endif

the computation of be
(n+1) with prefactors

be
(n+1) =

3∑

i=1

λ̄i (n+1) fakt(i) mi
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